MATROIDS WITH MANY SMALL CIRCUITS AND COCIRCUITS

JAMES OXLEY, SIMON PFEIL, CHARLES SEMPLE, AND GEOFF WHITTLE

Abstract

Tutte proved that a non-empty 3-connected matroid with every element in a 3 -element circuit and a 3 -element cocircuit is either a whirl or the cycle matroid of a wheel. This result led to the Splitter Theorem. More recently, Miller proved that a matroid of sufficient size with every pair of elements in a 4 -element circuit and a 4 -element cocircuit is a tipless spike. Here we investigate matroids having similar restrictions on their small circuits and cocircuits. In particular, we completely determine the 3 -connected matroids with every pair of elements in a 4 -element circuit and every element in a 3 -element cocircuit, as well as the 4 -connected matroids with every pair of elements in a 4 -element circuit and every element in a 4 -element cocircuit.

1. Introduction

The study of matroids with many small circuits and cocircuits begins with Tutte's well-known Wheels-and-Whirls Theorem [6]. This theorem was originally stated in terms of essential elements of a 3-connected matroid M, that is, elements e of M with the property that neither $M \backslash e$ nor M / e is 3 connected. We present it here in terms of 3 -circuits and 3 -cocircuits, where, as in the rest of the paper, a k-element circuit and a k^{\prime}-element cocircuit is denoted as a k-circuit and k^{\prime}-cocircuit, respectively.

Theorem 1.1. Let M be a non-empty 3-connected matroid. Then every element of M is in a 3-circuit and a 3-cocircuit if and only if M has rank at least three and is isomorphic to a wheel or a whirl.

Theorem 1.1 and its well-known extension, Seymour's Splitter Theorem [5], has been instrumental in the analysis of 3-connected matroids. More recently, Miller [2] proved the following result which has conditions similar to those in Tutte's theorem. For all $r \geq 3$, a rank- r tipless spike is a matroid

[^0]M with ground set $E=\left\{x_{1}, y_{1}, x_{2}, y_{2}, \ldots, x_{r}, y_{r}\right\}$ whose circuits consist of the following sets:
(i) all sets of the form $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ with $1 \leq i<j \leq r$,
(ii) a subset of $\left\{\left\{z_{1}, z_{2}, \ldots, z_{r}\right\}: z_{i} \in\left\{x_{i}, y_{i}\right\}\right.$ for all $\left.i\right\}$ such that no two members of this subset have more than $r-2$ common elements, and
(iii) all $(r+1)$-element subsets of E that contain none of the sets in (i) and (ii).

Theorem 1.2. Let M be a matroid with $|E(M)| \geq 13$. Then every pair of elements of M is in a 4-circuit and a 4-cocircuit if and only if M is a tipless spike.

In this paper, we continue along a similar line of inquiry. A matroid M has property (P 1) if every pair of elements is in a 4 -circuit and every element is in a 3 -cocircuit. Furthermore, a matroid M has property (P2) if every pair of elements is in a 4 -circuit and every element is in a 4 -cocircuit. The next two theorems are the main results of this paper. We denote the rank- 3 whirl, the Fano matroid, and the non-Fano matroid by \mathcal{W}^{3}, F_{7}, and F_{7}^{-}, respectively. Also, up to isomorphism, we denote the rank-3 simple matroid with ground set $\{1,2, \ldots, 7\}$ and whose 3 -circuits are $\{1,2,3\},\{1,4,5\},\{1,6,7\},\{2,4,6\}$, and $\{3,5,7\}$ by P_{7}.

Theorem 1.3. Let M be a non-empty 3-connected matroid. Then M has property (P1) if and only if
(i) $|E(M)| \leq 8$ and M is isomorphic to one of the matroids $U_{3,5}, M\left(K_{4}\right)$, $\mathcal{W}^{3}, F_{7},\left(F_{7}^{-}\right)^{*}$, and P_{7}^{*}, or
(ii) $|E(M)| \geq 9$ and M is isomorphic to $M\left(K_{3, n}\right)$ for some $n \geq 3$.

Theorem 1.4. Let M be a non-empty 4-connected matroid. Then M has property (P2) if and only if
(i) $|E(M)| \leq 15$ and M is isomorphic to one of the thirty-five matroids listed in the appendix, or
(ii) $|E(M)| \geq 16$ and M is isomorphic to $M\left(K_{4, n}\right)$ for some $n \geq 4$.

It is clear that $M\left(K_{3, n}\right)$, where $n \geq 3$, and $M\left(K_{4, n}\right)$, where $n \geq 4$, satisfy (P1) and (P2), respectively. For $|E(M)| \geq 9$ and $|E(M)| \geq 16$, the necessary directions of the proofs of Theorems 1.3 and 1.4 are given in Sections 2 and 3 , respectively. The connectivity conditions in Theorems 1.3 and 1.4 prevent an i-element subset of $E(M)$ from being both an i-circuit and an i-cocircuit, for $i=3$ and $i=4$, respectively. For the proof of Theorem 1.3 when $|E(M)| \leq 8$ and the proof of Theorem 1.4 when $|E(M)| \leq 15$, we refer the interested reader to Pfeil's PhD thesis [4]. We end the introduction with some preliminaries.

Throughout the paper, notation and terminology follows Oxley [3]. Let M be a matroid. Two subsets X and Y of $E(M)$ meet if $X \cap Y$ is non-empty. Referred to as orthogonality, it is well known that if C is a circuit and D is a cocircuit of M, then $|C \cap D| \neq 1$.

Lastly, let M_{1} and M_{2} be two matroids with ground sets E_{1} and E_{2}, respectively, and let $\varphi: E_{1} \rightarrow E_{2}$ be a bijection. Then φ is a weak map from M_{1} to M_{2} if, for every independent set I in M_{2}, we have $\varphi^{-1}(I)$ is independent in M_{1}, in which case, M_{2} is a weak-map image of M_{1}. Equivalently, it is easily checked that, φ is a weak map from M_{1} to M_{2} if, for every circuit C of M_{1}, we have $\varphi(C)$ contains a circuit in M_{2}. As in this paper, it is typical to assume that E_{1} and E_{2} are the same sets and φ is the identity map. The following theorem is due to Lucas [1].

Theorem 1.5. Let M_{2} be the weak-map image of a binary matroid M_{1}, and suppose that $r\left(M_{2}\right)=r\left(M_{1}\right)$. Then M_{2} is binary. Moreover, if M_{2} is connected, then $M_{2} \cong M_{1}$.

2. Matroids with Property (P1) and at Least 9 Elements

Throughout this section, M is a 3 -connected matroid satisfying (P1) and with ground set $E(M)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, where $t \geq 4$. Our ability to determine M, for when $|E(M)| \geq 9$, explicitly relies on showing that $E(M)$ can be partitioned into blocks in which each block is a 3 -cocircuit and M restricted to any two of these blocks is isomorphic to $M\left(K_{2,3}\right)$. We first prove that if M has two distinct 3 -cocircuits that meet in two elements, then M is isomorphic to $U_{3,5}$.

Lemma 2.1. Let D_{1} and D_{2} be two 3 -cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=$ 2. Then $M \cong U_{3,5}$.

Proof. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $D_{2}=$ $\left\{x_{1}, x_{2}, x_{4}\right\}$. Then $M^{*} \mid\left(D_{1} \cup D_{2}\right) \cong U_{2,4}$ since M is 3 -connected. This implies that if $|E(M)|=4$, then M has no 4-circuits; a contradiction, so $|E(M)| \geq 5$. Furthermore, by orthogonality, any circuit meeting $D_{1} \cup D_{2}$ does so in at least three elements. By (P1), M has a 4 -circuit C_{1} containing $\left\{x_{1}, x_{5}\right\}$, and there is a unique element x_{i} in $\left\{x_{2}, x_{3}, x_{4}\right\}$ that is not in C_{1}. Then, similarly, M has a 4 -circuit C_{2} containing $\left\{x_{i}, x_{5}\right\}$. Now $C_{1} \cup C_{2}=\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$ and $r\left(C_{1} \cup C_{2}\right)=3$. Also $r^{*}\left(C_{1} \cup C_{2}\right) \leq 3$. Therefore

$$
r\left(C_{1} \cup C_{2}\right)+r^{*}\left(C_{1} \cup C_{2}\right)-\left|C_{1} \cup C_{2}\right| \leq 3+3-5=1,
$$

and so $|E(M)| \leq 6$ as M is 3 -connected. Using the fact that M satisfies (P1), a routine check shows that $|E(M)| \leq 5$, and so $M \cong U_{3,5}$.

The next three lemmas concern disjoint 3 -cocircuits. The first shows that M restricted to two such 3 -cocircuits is isomorphic to $M\left(K_{2,3}\right)$, while the second and third accumulate in showing that if $|E(M)| \geq 9$, then M has three pairwise-disjoint 3-cocircuits.

Lemma 2.2. Let D_{1} and D_{2} be two disjoint 3-cocircuits of M. Then $M \mid\left(D_{1} \cup D_{2}\right) \cong M\left(K_{2,3}\right)$.

Proof. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $D_{2}=$ $\left\{x_{4}, x_{5}, x_{6}\right\}$. By (P1), M has a 4 -circuit C_{1} containing $\left\{x_{1}, x_{4}\right\}$. By orthogonality, we may assume $C_{1}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}$. Similarly, M has a 4 -circuit C_{2} containing $\left\{x_{3}, x_{6}\right\}$. By symmetry, we may assume $C_{2}=\left\{x_{1}, x_{3}, x_{4}, x_{6}\right\}$. Lastly, M has a 4 -circuit C_{3} containing $\left\{x_{2}, x_{6}\right\}$. We next show that C_{3} does not meet either C_{1} or C_{2} in three elements.

Say $\left|C_{1} \cap C_{3}\right|=3$. Then $C_{3} \subseteq\left(D_{1} \cup D_{2}\right)-x_{3}$. As M is 3 -connected, $M \mid\left(C_{1} \cup C_{3}\right) \cong U_{3,5}$, and so there exists a 4 -circuit in M meeting D_{1} in exactly one element; a contradiction. Thus $\left|C_{1} \cap C_{3}\right| \neq 3$ and, similarly, $\left|C_{2} \cap C_{3}\right| \neq 3$.

By orthogonality with D_{1} and D_{2}, it now follows that neither x_{1} nor x_{4} is in C_{3}, and so $C_{3}=\left\{x_{2}, x_{3}, x_{5}, x_{6}\right\}$. We now apply Theorem 1.5 to complete the proof. Since $M\left|\left(D_{1} \cup D_{2}\right)=M\right|\left(C_{1} \cup C_{2} \cup C_{3}\right)$, we have $r\left(M \mid\left(D_{1} \cup D_{2}\right)\right)=4$. Next, consider $K_{2,3}$, and label its edges so that

$$
\left\{\left\{x_{1}, x_{2}, x_{3}\right\},\left\{x_{4}, x_{5}, x_{6}\right\}\right\}
$$

is a partition of $E\left(K_{2,3}\right)$, where each block is a bond of $K_{2,3}$, and $\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\},\left\{x_{1}, x_{3}, x_{4}, x_{6}\right\}$, and $\left\{x_{2}, x_{3}, x_{5}, x_{6}\right\}$ are the 4 -cycles of $K_{2,3}$. Then the identity map from $E\left(M\left(K_{2,3}\right)\right)$ to $E\left(M \mid\left(D_{1} \cup D_{2}\right)\right)$ is a weak map from $M\left(K_{2,3}\right)$ to $M \mid\left(D_{1} \cup D_{2}\right)$. Moreover, as $M \mid\left(D_{1} \cup D_{2}\right)$ is connected, Theorem 1.5 implies that $M \mid\left(D_{1} \cup D_{2}\right) \cong M\left(K_{2,3}\right)$.

Lemma 2.3. If $|E(M)| \geq 9$, then M has two disjoint 3 -cocircuits.

Proof. Suppose $|E(M)| \geq 9$ and M has no pair of disjoint 3-cocircuits. Let D_{1} and D_{2} be distinct 3-cocircuits of M. Then, by Lemma 2.1, $\left|D_{1} \cap D_{2}\right|=1$ and so, without loss of generality, we may assume $D_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $D_{2}=\left\{x_{1}, x_{4}, x_{5}\right\}$. We first show that M has an element contained in three 3 -cocircuits.

Assume M has no such element. By (P1), M has a 3 -cocircuit D_{3} containing x_{6}. By assumption, D_{3} meets each of D_{1} and D_{2} and so, without loss of generality, $D_{3}=\left\{x_{2}, x_{4}, x_{6}\right\}$. But M also has a 3 -cocircuit containing x_{7}, and such a cocircuit cannot meet each of D_{1}, D_{2}, and D_{3} without using an element shared by two of them. Thus M has an element contained in three 3-cocircuits.

By Lemma 2.1, we may now assume that M has a 3 -cocircuit $D_{3}=$ $\left\{x_{1}, x_{6}, x_{7}\right\}$. Consider a 3-cocircuit D_{4} of M containing x_{8}. Since D_{4} meets each of D_{1}, D_{2}, and D_{3}, we have $x_{1} \in D_{4}$ and so, by Lemma 2.1, we may assume $D_{4}=\left\{x_{1}, x_{8}, x_{9}\right\}$. However, by (P 1), M has a 4 -circuit C containing $\left\{x_{1}, x_{2}\right\}$. By orthogonality, each of $\left|C \cap D_{2}\right|,\left|C \cap D_{3}\right|$, and $\left|C \cap D_{4}\right|$ is at least 2 which is impossible as $|C|=4$. This contradiction establishes the lemma.
Lemma 2.4. If $|E(M)| \geq 9$, then M has three pairwise-disjoint 3-cocircuits.

Proof. Suppose $|E(M)| \geq 9$. By Lemma 2.3, M has disjoint 3-cocircuits, $D_{1}=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $D_{2}=\left\{x_{4}, x_{5}, x_{6}\right\}$ say. By Lemma 2.2, we have $M \mid\left(D_{1} \cup D_{2}\right) \cong M\left(K_{2,3}\right)$. Therefore, without loss of generality, we may assume that M has circuits $C_{1}=\left\{x_{1}, x_{2}, x_{4}, x_{5}\right\}, C_{2}=\left\{x_{1}, x_{3}, x_{4}, x_{6}\right\}$, and $C_{3}=\left\{x_{2}, x_{3}, x_{5}, x_{6}\right\}$. By (P1), M has a 3 -cocircuit D_{3} containing x_{7}. If M does not contain three pairwise-disjoint 3-cocircuits, then D_{3} meets $D_{1} \cup D_{2}$ and, by orthogonality, it must do so in one of the pairs $\left\{x_{1}, x_{4}\right\},\left\{x_{2}, x_{5}\right\},\left\{x_{3}, x_{6}\right\}$. Therefore, by symmetry, we may assume $D_{3}=$ $\left\{x_{1}, x_{4}, x_{7}\right\}$. Similarly, if D_{4} is a 3 -cocircuit of M containing x_{8}, then, by Lemma 2.1, we may assume $D_{4}=\left\{x_{2}, x_{5}, x_{8}\right\}$. Finally, applying the same argument again, if D_{5} is a 3 -cocircuit of M containing x_{9}, we have $D_{5}=$ $\left\{x_{3}, x_{6}, x_{9}\right\}$. But then D_{3}, D_{4}, and D_{5} are disjoint, thereby completing the proof of the lemma.

We next show that $E(M)$ can be partitioned into 3-cocircuits provided $|E(M)| \geq 9$.
Lemma 2.5. If $|E(M)| \geq 9$, then $E(M)$ can be partitioned into 3-element blocks, where each block is a 3-cocircuit.

Proof. Suppose $|E(M)| \geq 9$, and let $S=\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ be the largest collection of pairwise-disjoint 3 -cocircuits of M. By Lemma 2.4, we have $n \geq$ 3. Suppose there is an element x in M not in any of the sets $D_{1}, D_{2}, \ldots, D_{n}$. By (P1), M has a 3 -cocircuit D containing x. Now D has a non-empty intersection with a 3 -cocircuit in S; otherwise, S is not of maximum size. Without loss of generality, $D \cap D_{1} \neq \emptyset$ and so, by Lemma 2.1, $\left|D \cap D_{1}\right|=1$. By Lemma 2.2, $M \mid\left(D_{1} \cup D_{i}\right) \cong M\left(K_{2,3}\right)$ for all $i \in\{2,3, \ldots, n\}$. Thus, by orthogonality, D meets each of $D_{2}, D_{3}, \ldots, D_{n}$. But then $|D| \geq 4$ as $n \geq 3$; a contradiction. Thus, the lemma is proved.

We are now ready to prove the necessary direction of Theorem 1.3 when $|E(M)| \geq 9$.

Proof of Theorem 1.3 for $|E(M)| \geq 9$. Suppose $|E(M)| \geq 9$. Then, by Lemma 2.5, there is a partition of $E(M)$ into 3-cocircuits $D_{1}, D_{2}, \ldots, D_{n}$
where $D_{i}=\left\{x_{i}, y_{i}, z_{i}\right\}$ for all i. By Lemma 2.2, $M \mid\left(D_{1} \cup D_{i}\right) \cong M\left(K_{2,3}\right)$ for all $i \in\{2,3, \ldots, n\}$, so we may assume that M has 4 -circuits $\left\{x_{1}, x_{i}, y_{1}, y_{i}\right\}$, $\left\{x_{1}, x_{i}, z_{1}, z_{i}\right\}$, and $\left\{y_{1}, y_{i}, z_{1}, z_{i}\right\}$ for all such i. Consider the circuits $\left\{x_{1}, x_{i}, y_{1}, y_{i}\right\}$ and $\left\{x_{1}, x_{j}, y_{1}, y_{j}\right\}$, where i and j are distinct. By circuit elimination and orthogonality, $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ is a 4 -circuit of M. Similarly, for all distinct $i, j \in\{2,3, \ldots, n\}$, we have $\left\{x_{i}, z_{i}, x_{j}, z_{j}\right\}$ and $\left\{y_{i}, z_{i}, y_{j}, z_{j}\right\}$ are 4-circuits of M.

We next show that each set of the form

$$
\left\{x_{i}, y_{i}, y_{j}, z_{j}, z_{k}, x_{k}\right\},
$$

where i, j, and k are distinct elements in $\{1,2, \ldots, n\}$, is a 6 -circuit of M Using circuit elimination on $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ and $\left\{x_{j}, z_{j}, x_{k}, z_{k}\right\}$, it follows that $\left\{x_{i}, y_{i}, y_{j}, x_{k}, z_{j}, z_{k}\right\}$ contains a circuit of M. By orthogonality and as each of $M\left|\left(D_{i} \cup D_{j}\right), M\right|\left(D_{i} \cup D_{k}\right)$, and $M \mid\left(D_{j} \cup D_{k}\right)$ is isomorphic to $M\left(K_{2,3}\right)$, it is easily checked that $\left\{x_{i}, y_{i}, y_{j}, x_{k}, z_{j}, z_{k}\right\}$ is itself a 6 -circuit of M.

Now consider $K_{3, n}$, where $n \geq 3$. Label the edge set of $K_{3, n}$ so that

$$
\left\{\left\{x_{1}, y_{1}, z_{1}\right\},\left\{x_{2}, y_{2} . z_{2}\right\}, \ldots,\left\{x_{n}, y_{n}, z_{n}\right\}\right\}
$$

is a partition of $E\left(K_{3, n}\right)$, where each block is a bond of $K_{3, n}$, and $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\},\left\{x_{i}, z_{i}, x_{j}, z_{j}\right\}$, and $\left\{y_{i}, z_{i}, y_{j}, z_{j}\right\}$ are 4 -cycles of $K_{3, n}$ for all distinct $i, j \in\{1,2, \ldots, n\}$. Then the identity map φ from $E\left(M\left(K_{3, n}\right)\right)$ to $E(M)$ is a weak map from $M\left(K_{3, n}\right)$ to M since, for each circuit C of $M\left(K_{3, n}\right)$, we have $\varphi(C)$ is a circuit of M by above.

We next prove that $r(M)=r\left(M\left(K_{3, n}\right)\right)$. To do this, we show, by induction, that for all 3 -connected matroids M^{\prime} satisfying (P1) and whose ground set can be partitioned into $m 3$-cocircuits, where $m \geq 3$, we have $r\left(M^{\prime}\right)=r\left(M\left(K_{3, m}\right)\right)$. If $n=3$, then, by Lemma 2.2 and the 4 -circuits established above, $r(M)=r\left(M\left(K_{3,3}\right)\right)$. Therefore suppose $n \geq 4$ and that, for all matroids M^{\prime} as described above, with $3 \leq m \leq n-1$, we have $r\left(M^{\prime}\right)=r\left(K_{3, m}\right)$. Let M^{-}denote the matroid $M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)$. We first show that M^{-}satisfies (P1). Evidently, every element of M^{-}is in a 3 -cocircuit. Let x and y be distinct elements of M^{-}. If x and y are in distinct 3 -cocircuits D_{i} and D_{j} of M^{-}, then, by orthogonality and M satisfying (P1), M^{-}has a 4 -circuit containing $\{x, y\}$. Say x and y are in the same 3-cocircuit, D_{i} say, of M^{-}. By considering D_{i} with either D_{1} if $i \neq 1$ or D_{2} if $i=1$, it follows by Lemma 2.2 that M^{-}has a 4 -circuit containing $\{x, y\}$. Lastly, it remains to show that M^{-}is 3 -connected. If M^{-}is not 3 -connected, then it has a 2 -separation (A, B). Since $n-1 \geq 3$, it follows that, for some $i \in\{1,2, \ldots, n-1\}$, there is a 3 -cocircuit D_{i} such that for one of A and B, say A, we have $D_{i} \subseteq A$, or $\left|D_{i} \cap A\right|=2$ and $|B| \geq 3$. Thus, we may assume that $D_{1} \subseteq A$. But then, by the 4 -circuits above,
$r\left(A \cup D_{n}\right)=r(A)+1$. Therefore

$$
\begin{aligned}
r\left(A \cup D_{n}\right)+r(B)-r(M) & =r(A)+1+r(B)-\left(r\left(M^{-}\right)+1\right) \\
& =r(A)+r(B)-r\left(M^{-}\right)
\end{aligned}
$$

and so $\left(A \cup D_{n}, B\right)$ is a 2-separation in M; a contradiction. Thus M^{-}is 3 -connected. By induction,

$$
r\left(M^{-}\right)=r\left(M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)=r\left(M\left(K_{3, n-1}\right)\right)\right.
$$

and so, as D_{n} is a cocircuit of M,

$$
r(M)=r\left(M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)+1=r\left(M\left(K_{3, n}\right)\right)\right.
$$

Finally, M is connected and so, by Theorem $1.5, M \cong M\left(K_{3, n}\right)$. This completes the proof of Theorem 1.3.

3. Matroids with Property (P2) and at Least 16 Elements

Throughout this section, M is a 4-connected matroid satisfying (P2). Unless stated otherwise, M has ground set $E(M)=\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}$, where $t \geq 4$. The approach is similar to that of the last section. In particular, most of the work is in establishing that if $|E(M)| \geq 16$, then there is partition of $E(M)$ into blocks in which each block is a 4-cocircuit. However, because of the freedom of 4 -cocircuits in comparison to 3 -cocircuits, the case analysis is much more involved. We begin with a lemma analogous to Lemma 2.1.

Lemma 3.1. Let D_{1} and D_{2} be 4-cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=3$. Then $M \cong U_{3,6}$.

Proof. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $D_{2}=$ $\left\{x_{1}, x_{2}, x_{3}, x_{5}\right\}$. Then $M^{*} \mid\left(D_{1} \cup D_{2}\right) \cong U_{3,5}$ as M is 4-connected. Therefore, if $|E(M)|=5$, then M has no 4-circuits; a contradiction, so $|E(M)| \geq 6$. Furthermore, by orthogonality, any circuit meeting $D_{1} \cup D_{2}$ does so in at least three elements.

By (P2), M has a 4 -circuit C_{1} containing $\left\{x_{1}, x_{6}\right\}$. Similarly, M has a 4-circuit C_{2} containing $\left\{x_{i}, x_{6}\right\}$, where $x_{i} \in\left(D_{1} \cup D_{2}\right)-C_{1}$. Since $C_{1}-x_{6} \subseteq$ $D_{1} \cup D_{2}$ and $C_{2}-x_{6} \subseteq D_{1} \cup D_{2}$, it follows by circuit elimination that M has a circuit $C_{3} \subseteq D_{1} \cup D_{2}$. Since M is 4-connected and $|E(M)| \geq 6$, we have $\left|C_{3}\right| \in\{4,5\}$. Now

$$
r\left(C_{3}\right)+r^{*}\left(C_{3}\right)-\left|C_{3}\right|=2
$$

so, as M is 4-connected, $|E(M)| \leq 7$. As M satisfies (P2), a routine check shows that $|E(M)| \leq 6$, and so $M \cong U_{3,6}$.

We next establish an analogue of Lemma 2.2. In particular, Lemma 3.5 states that if M has two disjoint 4-cocircuits, then M restricted to these 4cocircuits is isomorphic to $M\left(K_{2,4}\right)$. This lemma requires three preliminary results. In each of these preliminary results as well as Lemma 3.5, we suppose that $X=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $Y=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$ are disjoint 4-cocircuits of M. Observe that orthogonality and the 4 -connectedness of M imply that every 4-circuit contained in $X \cup Y$ meets each of X and Y in exactly two elements.

Lemma 3.2. Let C_{1} and C_{2} be distinct 4-circuits of M contained in $X \cup Y$ such that $\left|C_{1} \cap C_{2} \cap X\right| \geq 1$. Then $\left|C_{1} \cap C_{2} \cap X\right|=1$.

Proof. Since each 4-circuit contained in $X \cup Y$ meets each of X and Y in exactly two elements, it suffices to show that $\left|C_{1} \cap C_{2} \cap X\right| \neq 2$. Suppose $\mid C_{1} \cap$ $C_{2} \cap X \mid=2$. Then $\left|C_{1} \cap C_{2}\right| \in\{2,3\}$. If $\left|C_{1} \cap C_{2}\right|=3$, then we may assume that $C_{1}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, and $C_{2}=\left\{x_{1}, x_{2}, y_{1}, y_{3}\right\}$. By circuit elimination, M has a circuit contained in $\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}$, but such a circuit contradicts either the 4 -connectivity of M or orthogonality. If $\left|C_{1} \cap C_{2}\right|=2$, then we may assume that $C_{1}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, and $C_{2}=\left\{x_{1}, x_{2}, y_{3}, y_{4}\right\}$. By circuit elimination, M has a circuit contained in $\left\{x_{1}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$. But again, such a circuit contradicts either the 4 -connectivity of M or orthogonality. Thus $\left|C_{1} \cap C_{2} \cap X\right| \neq 2$, thereby completing the proof of the lemma.

Lemma 3.3. Let C_{1}, C_{2}, and C_{3} be distinct 4 -circuits of M such that $C_{1} \cup C_{2} \cup C_{3} \subseteq X \cup Y$ and $X \subseteq C_{1} \cup C_{2} \cup C_{3}$. Then $Y \subseteq C_{1} \cup C_{2} \cup C_{3}$.

Proof. Suppose $Y-\left(C_{1} \cup C_{2} \cup C_{3}\right)$ is non-empty. Then, by Lemma 3.2, we may assume that $C_{1} \cap Y=\left\{y_{2}, y_{3}\right\}, C_{2} \cap Y=\left\{y_{1}, y_{3}\right\}$, and $C_{3} \cap Y=\left\{y_{1}, y_{2}\right\}$. Furthermore, by Lemma 3.2, we may also assume that $C_{1} \cap X=\left\{x_{1}, x_{2}\right\}$ and $C_{2} \cap X=\left\{x_{1}, x_{3}\right\}$, in which case, $\left\{x_{1}, y_{1}, y_{2}, y_{3}\right\}$ spans X. Now X is independent as M is 4 -connected, and so $\left\{y_{1}, y_{2}, y_{3}\right\} \subseteq \operatorname{cl}(X)$. But then M has a circuit that contains y_{1} and is contained in $X \cup y_{1}$. This contradiction to orthogonality completes the proof of the lemma.
Lemma 3.4. Let C_{1} and C_{2} be distinct 4-circuits of M in $X \cup Y$ such that $\left|C_{1} \cap C_{2}\right| \geq 1$. Then $\left|C_{1} \cap C_{2}\right|=2$.

Proof. Assume $\left|C_{1} \cap C_{2}\right| \neq 2$. Since

$$
\left|C_{1} \cap C_{2}\right|=\left|C_{1} \cap C_{2} \cap X\right|+\left|C_{1} \cap C_{2} \cap Y\right|,
$$

it follows by Lemma 3.2 and symmetry that we may assume $\left|C_{1} \cap C_{2} \cap X\right|=1$ and $\left|C_{1} \cap C_{2} \cap Y\right|=0$. Without loss of generality, let $C_{1}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$ and $C_{2}=\left\{x_{1}, x_{3}, y_{3}, y_{4}\right\}$. By Lemma 3.3, any additional 4 -circuit of M contained in $X \cup Y$ includes x_{4}. By (P2), M has a 4 -circuit C_{3} containing $\left\{x_{2}, y_{3}\right\}$. By orthogonality and Lemma 3.2, we may assume $C_{3}=\left\{x_{2}, x_{4}, y_{1}, y_{3}\right\}$.

Similarly, M has a 4 -circuit C_{4} containing $\left\{x_{2}, y_{4}\right\}$. But then $x_{4} \in C_{4}$ and $\left|C_{3} \cap C_{4} \cap X\right|=2$, contradicting Lemma 3.2. The lemma now follows.

Lemma 3.5. The restriction $M \mid(X \cup Y) \cong M\left(K_{2,4}\right)$.

Proof. By (P2), M has a 4 -circuit C_{1} containing x_{1} and y_{1}. By orthogonality, we may assume $C_{1}=\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$. Furthermore, M has a 4 -circuit C_{2} containing x_{1} and y_{3}. By orthogonality and Lemmas 3.2 and 3.4, we may assume $C_{2}=\left\{x_{1}, x_{3}, y_{1}, y_{3}\right\}$. Similarly, M has a 4 -circuit C_{3} containing x_{1} and y_{4} and, by Lemmas 3.2 and 3.4, $C_{3}=\left\{x_{1}, x_{4}, y_{1}, y_{4}\right\}$.

Continuing this process, M has a 4 -circuit C_{4} containing x_{2} and y_{3}. Since $x_{2} \in C_{1} \cap C_{4}$, we have $x_{1} \notin C_{4}$ by Lemma 3.2. Therefore, as $y_{3} \in C_{2} \cap C_{4}$, Lemma 3.4 implies that $x_{3} \in C_{4}$. Since $x_{2} \in C_{1} \cap C_{4}$ and $x_{3}, y_{3} \in C_{2} \cap$ C_{4}, it follows by Lemma 3.4 that $y_{2} \in C_{4}$. Hence $C_{4}=\left\{x_{2}, x_{3}, y_{2}, y_{3}\right\}$. Similarly, M has a unique 4 -circuit containing x_{2} and y_{4} and it is $C_{5}=$ $\left\{x_{2}, x_{4}, y_{2}, y_{4}\right\}$, and M has a unique 4 -circuit containing x_{3} and y_{4} and it is $C_{6}=\left\{x_{3}, x_{4}, y_{3}, y_{4}\right\}$.

We now show that $\mathcal{C}(M \mid(X \cup Y))=\left\{C_{1}, C_{2}, \ldots, C_{6}\right\}$. First observe that, since every 2 -element subset of each of X and Y is in one of $C_{1}, C_{2}, \ldots, C_{6}$, Lemma 3.2 implies that $M \mid(X \cup Y)$ has no other 4-circuits. Clearly, $r(X \cup Y)=5$. Suppose there is a circuit $C \in \mathcal{C}(M \mid(X \cup Y))-$ $\left\{C_{1}, C_{2}, \ldots, C_{6}\right\}$. If $|C|=6$, then C contains C_{i} for some $i \in\{1,2, \ldots, 6\}$; a contradiction. Therefore, $|C|=5$. To maintain orthogonality, either $|C \cap X|=2$ or $|C \cap Y|=2$. Thus to avoid containing one of the six 4 -circuits, we may assume that $C=\left\{x_{1}, x_{2}, y_{2}, y_{3}, y_{4}\right\}$. But then, $\operatorname{cl}\left(\left\{x_{1}, y_{2}, y_{3}, y_{4}\right\}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{1}, y_{2}, y_{3}, y_{4}\right\}$, so $r(X \cup Y)=4$; a contradiction. Thus $\mathcal{C}(M \mid(X \cup Y))=\left\{C_{1}, C_{2}, \ldots, C_{6}\right\}$. It is now easily checked that $M \mid(X \cup Y) \cong M\left(K_{2,4}\right)$.

The next main step in the proof of Theorem 1.4 is to show that if $|E(M)| \geq 11$, then M has two disjoint 4-cocircuits. Stated as Lemma 3.15, its proof is long and consists of a sequence of preliminary lemmas. Except for the first, these preliminary lemmas concern the way 4 -cocircuits intersect if M has no two disjoint 4-cocircuits.

Lemma 3.6. Let D_{1}, D_{2}, and D_{3} be 4-cocircuits of M such that $\mid D_{1} \cap$ $D_{2} \cap D_{3} \mid=1$ and $\left|D_{i} \cap D_{j}\right|=1$ for all distinct $i, j \in\{1,2,3\}$. Then $E(M)=D_{1} \cup D_{2} \cup D_{3}$, that is, $|E(M)|=10$.

Proof. Suppose that $E(M)-\left(D_{1} \cup D_{2} \cup D_{3}\right) \neq \emptyset$. Let $y \in E(M)-\left(D_{1} \cup\right.$ $D_{2} \cup D_{3}$) and $D_{1} \cap D_{2} \cap D_{3}=\{x\}$. By (P2), M has a 4 -circuit C containing $\{x, y\}$ and, by orthogonality, $\left|C \cap D_{i}\right| \geq 2$ for all i. But then $|C| \geq 5$; a contradiction.

The next two lemmas show that if $|E(M)| \geq 11$ and M has no two disjoint 4-cocircuits, then M has two 4 -cocircuits meeting in exactly two elements and that every other 4 -cocircuit of M meets the union of two such 4 -cocircuits in at least two elements. These two lemmas underlie the approach taken to establish Lemma 3.15.

Lemma 3.7. Let $|E(M)| \geq 11$, and suppose that M has no two disjoint 4 -cocircuits. Then M has 4 -cocircuits D_{1} and D_{2} such that $\left|D_{1} \cap D_{2}\right|=2$.

Proof. Suppose the lemma does not hold. By (P2), M has a 4 -cocircuit D_{1} containing x_{1}. Without loss of generality, we may assume $D_{1}=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. Also, M has a 4 -cocircuit D_{2} that contains x_{5} and, as M has no two disjoint 4 -cocircuits, meets D_{1}. By Lemma 3.1, $\left|D_{1} \cap D_{2}\right|=1$, and so we may assume $D_{2}=\left\{x_{1}, x_{5}, x_{6}, x_{7}\right\}$. Similarly, M has a 4 -cocircuit D_{3} that contains x_{8} and $\left|D_{1} \cap D_{3}\right|=\left|D_{2} \cap D_{3}\right|=1$. As $|E(M)| \geq 11$, it follows by Lemma 3.6 that $x_{1} \notin D_{3}$. Therefore, without loss of generality, $D_{3}=\left\{x_{2}, x_{5}, x_{8}, x_{9}\right\}$. Lastly, M has a 4 -cocircuit D_{4} containing x_{10} and

$$
\left|D_{1} \cap D_{4}\right|=\left|D_{2} \cap D_{4}\right|=\left|D_{3} \cap D_{4}\right|=1 .
$$

By Lemma 3.6, we may assume $D_{4}=\left\{x_{3}, x_{6}, x_{8}, x_{10}\right\}$. But then, a similar argument implies that M has the 4 -cocircuit $D_{5}=\left\{x_{4}, x_{7}, x_{9}, x_{11}\right\}$, in which case D_{4} and D_{5} are disjoint; a contradiction.

Lemma 3.8. Let $|E(M)| \geq 10$, and suppose that M has no two disjoint 4cocircuits. Let D_{1}, D_{2}, and D_{3} be 4 -cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$. Then $\left|D_{3} \cap\left(D_{1} \cup D_{2}\right)\right| \geq 2$.

Proof. If the lemma does not hold, then $\left|D_{3} \cap\left(D_{1} \cup D_{2}\right)\right|=1$. More specifically, as M has no two disjoint 4-cocircuits, $\left|D_{1} \cap D_{2} \cap D_{3}\right|=1$. Let $\{x\}=D_{1} \cap D_{2} \cap D_{3}$. By circuit elimination, M has a cocircuit $D_{4} \subseteq\left(D_{1} \cup D_{2}\right)-\{x\}$. Since $D_{3} \cap D_{4}=\emptyset$, it follows that $\left|D_{4}\right| \neq 4$. Therefore, as M is 4 -connected, $D_{4}=\left(D_{1} \cup D_{2}\right)-\{x\}$.

Since $|E(M)| \geq 10$, we have $\left|E(M)-\left(D_{1} \cup D_{2} \cup D_{3}\right)\right| \geq 1$. Let $y \in$ $E(M)-\left(D_{1} \cup D_{2} \cup D_{3}\right)$, and let C be a 4 -circuit containing $\{x, y\}$. To preserve orthogonality, C contains an element in $D_{3}-\{x\}$ and the unique element in $\left(D_{1} \cap D_{2}\right)-\{x\}$. But then $\left|C \cap D_{4}\right|=1$. This contradiction to orthogonality proves the lemma.

Lemma 3.9. Let $|E(M)| \geq 9$, and suppose that M has no two disjoint 4-cocircuits. Let D_{1}, D_{2}, and D_{3} be distinct 4-cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$. Then $D_{1} \cap D_{2} \nsubseteq D_{3}$.

Proof. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $D_{2}=$ $\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$. Suppose that $\left\{x_{1}, x_{2}\right\} \subseteq D_{3}$. By Lemma 3.1, we may assume that $D_{3}=\left\{x_{1}, x_{2}, x_{7}, x_{8}\right\}$. Using circuit elimination on each pair
of cocircuits in $\left\{D_{1}, D_{2}, D_{3}\right\}$ and eliminating x_{2}, we find that each of $\left\{x_{1}, x_{3}, x_{4}, x_{5}, x_{6}\right\},\left\{x_{1}, x_{3}, x_{4}, x_{7}, x_{8}\right\}$, and $\left\{x_{1}, x_{5}, x_{6}, x_{7}, x_{8}\right\}$ contains a cocircuit. Noting that M has no cocircuits of size at most three, each such cocircuit must contain x_{1}; otherwise, M has two disjoint 4-cocircuits. Moreover, for each of these 5 -element sets, every 4 -element subset containing x_{1} meets D_{1}, D_{2}, or D_{3} in exactly three elements. Thus, by Lemma 3.1 , none of these subsets is a 4 -cocircuit. Hence each of these 5 -element sets is a cocircuit, which we refer to as D_{5}, D_{6}, and D_{7}, respectively.

By (P2), M has a 4 -circuit C_{1} containing $\left\{x_{1}, x_{9}\right\}$. By considering the intersection of C_{1} with each of D_{1}, D_{2}, and D_{3}, we see that $x_{2} \in C_{1}$. But then, regardless of the choice for the remaining element in C_{1}, it follows that C_{1} meets one of D_{5}, D_{6}, and D_{7} in exactly one element, contradicting orthogonality. This contradiction proves the lemma.

Lemma 3.10. Let $|E(M)| \geq 11$, and suppose that M has no two disjoint 4 -cocircuits. Let D_{1}, D_{2}, and D_{3} be 4 -cocircuits of M such that $\mid D_{1} \cap D_{2} \cap$ $D_{3} \mid=1$. Then $\left|D_{i} \cap D_{j}\right|=1$ for some distinct elements $i, j \in\{1,2,3\}$.

Proof. Suppose the lemma does not hold. Then, by Lemmas 3.1 and 3.9, we may assume, without loss of generality, that $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$, $D_{2}=\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$, and $D_{3}=\left\{x_{1}, x_{3}, x_{5}, x_{7}\right\}$. Let C_{1} be a 4 -circuit of M containing $\left\{x_{8}, x_{9}\right\}$. If C_{1} meets $D_{1} \cup D_{2} \cup D_{3}$, then, by orthogonality, it does so in at least three elements. Therefore $C_{1} \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)=\emptyset$, so $|E(M)| \geq 11$ and we may assume $C_{1}=\left\{x_{8}, x_{9}, x_{10}, x_{11}\right\}$.

Now let D_{4} be a 4 -cocircuit of M containing x_{8}. By orthogonality, we may assume $x_{9} \in D_{4}$. Since M has no two disjoint 4 -cocircuits, D_{4} meets each of D_{1}, D_{2}, and D_{3}. Furthermore, by Lemma 3.8, D_{4} contains at least two elements from each of $D_{1} \cup D_{2}, D_{1} \cup D_{3}$, and $D_{2} \cup D_{3}$. If $x_{1} \in D_{4}$, then, by Lemma 3.9, none of x_{2}, x_{3}, and x_{5} are in D_{4}. It follows that $x_{1} \notin D_{4}$. Therefore, without loss of generality, $D_{4}=\left\{x_{2}, x_{3}, x_{8}, x_{9}\right\}$.

Finally, let C_{2} be a 4 -circuit of M containing $\left\{x_{4}, x_{10}\right\}$. By orthogonality, $\left|C_{2} \cap D_{1}\right| \geq 2$. If $x_{1} \notin C_{2}$, then, without loss of generality, we may assume that $x_{2} \in C_{2}$. But then $C_{2} \cap D_{2} \neq \emptyset$ and $C_{2} \cap D_{4} \neq \emptyset$, and it follows by orthogonality that $\left|C_{2} \cap D_{2}\right| \geq 2$ and $\left|C_{2} \cap D_{4}\right| \geq 2$, which is not possible. Thus $x_{1} \in C_{2}$. Therefore $C_{2} \cap D_{2} \neq \emptyset$ and $C_{2} \cap D_{3} \neq \emptyset$, and so $C_{2}=\left\{x_{1}, x_{4}, x_{5}, x_{10}\right\}$. Similarly, M has a unique 4 -circuit C_{3} containing $\left\{x_{4}, x_{11}\right\}$ and it is $C_{3}=\left\{x_{1}, x_{4}, x_{5}, x_{11}\right\}$. As M is 4-connected, $M \mid\left(C_{2} \cup C_{3}\right)$ is isomorphic to $U_{3,5}$. In turn, this implies that M has a circuit, namely, $\left\{x_{4}, x_{5}, x_{10}, x_{11}\right\}$ meeting D_{1} in exactly one element. This contradiction completes the proof of the lemma.

For the rest of the lemmas leading to the proof that M has two disjoint 4-cocircuits if $|E(M)| \geq 11$, we frequently refer to the way in which a 4cocircuit intersects two other 4-cocircuits which share two elements. For ease of reading, we introduce the following terminology.

Let D_{1}, D_{2}, and D_{3} be 4 -cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$. With respect to $\left(D_{1}, D_{2}\right)$, we say that D_{3} is
(i) Type-1 if $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right|=1$, and $\left|D_{3} \cap\left(D_{1}-D_{2}\right)\right|=1$, and $\mid D_{3} \cap$ $\left(D_{2}-D_{1}\right) \mid=0$,
(ii) Type-2 if $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right|=0$, and $\left|D_{3} \cap D_{1}\right|=\left|D_{3} \cap D_{2}\right|=1$, and
(iii) Type-3 if $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right|=0$, and $\left|D_{3} \cap D_{1}\right|=2$, and $\left|D_{3} \cap D_{2}\right|=1$.

Set diagrams of the three types are shown in Fig. 1.

Figure 1. Set diagrams of Types-1, -2 , and -3 intersections.
Note that Type-2 intersections are symmetric, and therefore we will denote this intersection by $\left\{D_{1}, D_{2}\right\}$-Type- 2 . There will be occasions in which it is sufficient to specify that D_{3} is either $\left(D_{1}, D_{2}\right)$-Type- i or $\left(D_{2}, D_{1}\right)$-Type- i for a fixed $i \in\{1,3\}$. In these instances, we will say that D_{3} is $\left\{D_{1}, D_{2}\right\}$ -Type- i. The previous lemmas ensure that any 4 -cocircuit not contained in $D_{1} \cup D_{2}$ intersects $D_{1} \cup D_{2}$ in one of the above types if M has no two disjoint 4 -cocircuits and $|E(M)| \geq 11$. We prove this in the following lemma.

Lemma 3.11. Let $|E(M)| \geq 11$, and suppose that M has no two disjoint 4 -cocircuits. Let D_{1} and D_{2} be 4 -cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$. If D_{3} is a 4-cocircuit of M such that $D_{3} \nsubseteq D_{1} \cup D_{2}$, then D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type- i for some $i \in\{1,2,3\}$.

Proof. Let D_{3} be a 4-cocircuit of M not contained in $D_{1} \cup D_{2}$. By Lemma 3.9, $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right| \in\{0,1\}$. Suppose that $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right|=1$. By Lemma 3.8, $\left|D_{3} \cap\left(D_{1} \cup D_{2}\right)\right| \geq 2$, so we may assume $\left|D_{3} \cap\left(D_{1}-D_{2}\right)\right|=1$. Since $\left|D_{1} \cap D_{2}\right|=2$ and $\left|D_{1} \cap D_{3}\right|=2$, it follows by Lemma 3.10 that $\left|D_{2} \cap D_{3}\right|=1$. Therefore $\left|D_{3} \cap\left(D_{2}-D_{1}\right)\right|=0$, and D_{3} is (D_{1}, D_{2})-Type-1.

Now suppose that $\left|D_{3} \cap\left(D_{1} \cap D_{2}\right)\right|=0$. As M has no two disjoint 4cocircuits, we have $D_{1} \cap D_{3} \neq \emptyset$ and $D_{2} \cap D_{3} \neq \emptyset$. Therefore, without loss of generality, as $D_{3} \nsubseteq D_{1} \cup D_{2}$, either $\left|D_{1} \cap D_{3}\right|=\left|D_{2} \cap D_{3}\right|=1$, or $\left|D_{1} \cap D_{3}\right|=2$ and $\left|D_{2} \cap D_{3}\right|=1$. In particular, D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type- 2 or (D_{1}, D_{2})-Type- 3 , respectively.

For when $|E(M)| \geq 11$, the next three lemmas show that if M has no two disjoint 4-cocircuits, and D_{1}, D_{2}, and D_{3} are 4 -cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$ and $D_{3} \nsubseteq D_{1} \cup D_{2}$, then D_{3} is neither $\left\{D_{1}, D_{2}\right\}$-Type- 2 nor $\left\{D_{1}, D_{2}\right\}$-Type-3.

Lemma 3.12. Let $|E(M)| \geq 11$, and suppose that M has no two disjoint 4-cocircuits. Let D_{1}, D_{2}, D_{3}, and D_{4} be distinct 4-cocircuits of M such that $\left|D_{1} \cap D_{2}\right|=2$ and D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type-2. If $D_{4} \nsubseteq D_{1} \cup D_{2} \cup D_{3}$, then D_{4} is $\left\{D_{1}, D_{2}\right\}$-Type-1.

Proof. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, D_{2}=$ $\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$, and $D_{3}=\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\}$, and suppose $x_{9} \in D_{4}$. If D_{4} is not $\left\{D_{1}, D_{2}\right\}$-Type-1, then, by Lemma 3.11, it is either $\left\{D_{1}, D_{2}\right\}$-Type- 2 or $\left\{D_{1}, D_{2}\right\}$-Type- 3 . First assume that D_{4} is $\left\{D_{1}, D_{2}\right\}$-Type- 3 . Then, without loss of generality, either $D_{4}=\left\{x_{3}, x_{4}, x_{5}, x_{9}\right\}$ or $D_{4}=\left\{x_{3}, x_{4}, x_{6}, x_{9}\right\}$. If $D_{4}=\left\{x_{3}, x_{4}, x_{5}, x_{9}\right\}$, then $\left|D_{3} \cap D_{4}\right|=2$ and $\left|D_{2} \cap\left(D_{3} \cup D_{4}\right)\right|<2$, contradicting Lemma 3.8. Similarly, if $D_{4}=\left\{x_{3}, x_{4}, x_{6}, x_{9}\right\}$, then $\left|D_{1} \cap D_{4}\right|=2$ and $\left|D_{3} \cap\left(D_{1} \cup D_{4}\right)\right|<2$, again contradicting Lemma 3.8. Thus D_{4} is not $\left\{D_{1}, D_{2}\right\}$-Type- 3 .

Now assume that D_{4} is $\left\{D_{1}, D_{2}\right\}$-Type-2. Then $\left|D_{4} \cap\left\{x_{3}, x_{5}\right\}\right| \leq 1$; otherwise, $\left\{x_{3}, x_{5}\right\} \subseteq D_{4}$ and $\left|D_{1} \cap\left(D_{3} \cup D_{4}\right)\right|<2$, contradicting Lemma 3.8. If $\left|D_{4} \cap\left\{x_{3}, x_{5}\right\}\right|=1$, then, without loss of generality, $x_{3} \in D_{4}$. Since D_{4} is $\left\{D_{1}, D_{2}\right\}$-Type-2, we have $x_{6} \in D_{4}$. Furthermore, either x_{7} or x_{8} is in D_{4}; otherwise, $\left|D_{1} \cap D_{3} \cap D_{4}\right|=1$ and $\left|D_{i} \cap D_{j}\right|=1$ for all distinct $i, j \in\{1,3,4\}$, and so we contradict Lemma 3.6 as $|E(M)| \geq 11$. Hence, by Lemma 3.1, we may assume $D_{4}=\left\{x_{3}, x_{6}, x_{7}, x_{9}\right\}$. But then $\left|D_{3} \cap D_{4}\right|=2$ and $\left|D_{1} \cap\left(D_{3} \cup D_{4}\right)\right|<2$, contradicting Lemma 3.8.

It now follows that D_{4} avoids $\left\{x_{3}, x_{5}\right\}$, and so $x_{4}, x_{6} \in D_{4}$. Furthermore, as M has no disjoint 4 -cocircuits, we may assume $x_{7} \in D_{4}$. Thus $D_{4}=\left\{x_{4}, x_{6}, x_{7}, x_{9}\right\}$. By (P2), M has a 4 -cocircuit D_{5} containing x_{10}.

By Lemma 3.11, D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type- i for some $i \in\{1,2,3\}$. By applying the argument that showed D_{4} is not $\left\{D_{1}, D_{2}\right\}$-Type- 3 to D_{5}, we have that D_{5} is not $\left\{D_{1}, D_{2}\right\}$-Type- 3 . If D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type- 2 , then, by the analysis of the previous paragraph, $\left\{x_{4}, x_{6}\right\} \subseteq D_{5}$ and $\left\{x_{7}, x_{8}\right\} \cap D_{5} \neq \emptyset$. If $D_{5}=\left\{x_{4}, x_{6}, x_{7}, x_{10}\right\}$, then $\left|D_{4} \cap D_{5}\right|=3$, and so, by Lemma 3.1, M is isomorphic to $U_{3,6}$; a contradiction. If $D_{5}=\left\{x_{4}, x_{6}, x_{8}, x_{10}\right\}$, then $\left|D_{4} \cap D_{5}\right|=2$ and $\left|D_{1} \cap\left(D_{4} \cup D_{5}\right)\right|<2$, contradicting Lemma 3.8. Therefore D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type-1. It is easily checked that, by symmetry, we may assume that D_{5} is (D_{1}, D_{2})-Type-1.

By symmetry, we may assume $\left\{x_{1}, x_{3}\right\} \subseteq D_{5}$. Furthermore, D_{5} contains either x_{7} or x_{9}; otherwise, $D_{4} \cap D_{5}=\emptyset$. But, if $D_{5}=\left\{x_{1}, x_{3}, x_{7}, x_{10}\right\}$, then $\left|D_{3} \cap D_{5}\right|=2$ and $\left|D_{4} \cap\left(D_{3} \cup D_{5}\right)\right|<2$, contradicting Lemma 3.8. Similarly, if $D_{5}=\left\{x_{1}, x_{3}, x_{9}, x_{10}\right\}$, then $\left|D_{1} \cap D_{5}\right|=2$ and $\left|D_{3} \cap\left(D_{1} \cup D_{5}\right)\right|<2$, again contradicting Lemma 3.8. This completes the proof of the lemma.
Lemma 3.13. Let $|E(M)| \geq 11$, and suppose M has no two disjoint 4cocircuits. Let D_{1}, D_{2} and D_{3} be distinct 4 -cocircuits of M such that $\mid D_{1} \cap$ $D_{2} \mid=2$ and $D_{3} \nsubseteq D_{1} \cup D_{2}$. Then D_{3} is not $\left\{D_{1}, D_{2}\right\}$-Type- 2 .

Proof. Suppose D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type-2. Then, without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, D_{2}=\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$, and $D_{3}=\left\{x_{3}, x_{5}, x_{7}, x_{8}\right\}$. By (P2), M has a 4 -cocircuit D_{4} containing x_{9}. By symmetry and Lemma 3.12, we may assume that D_{4} is $\left(D_{1}, D_{2}\right)$-Type-1, in which case, D_{4} meets $\left\{x_{3}, x_{4}\right\}$ but avoids $\left\{x_{5}, x_{6}\right\}$. Since $\left|D_{1} \cap D_{4}\right|=2$, it follows by Lemma 3.8 that $\left|D_{3} \cap\left(D_{1} \cup D_{4}\right)\right| \geq 2$, so $D_{4} \cap\left\{x_{7}, x_{8}\right\} \neq \emptyset$. Hence, without loss of generality, either $D_{4}=\left\{x_{1}, x_{3}, x_{7}, x_{9}\right\}$ or $D_{4}=\left\{x_{1}, x_{4}, x_{7}, x_{9}\right\}$. First assume that $D_{4}=\left\{x_{1}, x_{3}, x_{7}, x_{9}\right\}$.
3.13.1. Let D be a 4 -cocircuit of M such that $D \nsubseteq D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$. Then $\left|\left\{x_{1}, x_{3}\right\} \cap D\right|=1$.

By Lemma 3.12, D is $\left\{D_{1}, D_{2}\right\}$-Type-1. Furthermore, as $\left|D_{3} \cap D_{4}\right|=2$ and D_{2} is $\left(D_{3}, D_{4}\right)$-Type-2, it follows by Lemma 3.12 that D is $\left\{D_{3}, D_{4}\right\}-$ Type-1. Also, as $D_{1} \cap D_{4}=\left\{x_{1}, x_{3}\right\}$, Lemma 3.9 implies that $\left\{x_{1}, x_{3}\right\} \nsubseteq D$.

If $\left\{x_{1}, x_{3}\right\} \cap D=\emptyset$, then, as D is $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{3}, D_{4}\right\}$-Type- 1 , we have $\left\{x_{2}, x_{7}\right\} \subseteq D$ as well as $x_{5} \in D$. Hence $D \cap\left(D_{1} \cup D_{2} \cup D_{3} \cup\right.$ $\left.D_{4}\right)=\left\{x_{2}, x_{5}, x_{7}\right\}$. Now $\left|D_{2} \cap D\right|=2$ and $\left|D_{3} \cap D\right|=2$. Furthermore, D_{4} is $\left\{D_{2}, D\right\}$-Type- $2, D_{1}$ is $\left\{D_{3}, D\right\}$-Type- 2 , and D is $\left\{D_{1}, D_{4}\right\}$-Type- 2 . Therefore, by Lemma 3.12, if D^{\prime} is a 4 -cocircuit of M such that $D^{\prime} \nsubseteq$ $\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \cup D\right)$, then D^{\prime} is $\left\{D_{2}, D\right\}$-Type-1, $\left\{D_{3}, D\right\}$-Type-1, and $\left\{D_{1}, D_{4}\right\}$-Type-1. As $|E(M)| \geq 11, M$ has such a cocircuit D^{\prime}. By Lemma 3.9, if $x_{1} \in D^{\prime}$, then $x_{2} \notin D^{\prime}$ and $x_{3} \notin D^{\prime}$. Since D^{\prime} is a $\left\{D_{2}, D\right\}$ -Type- 1 and $\left\{D_{3}, D\right\}$-Type-1, we have $x_{5} \in D^{\prime}$ and, further, $x_{7} \notin D^{\prime}$. Since D^{\prime} is $\left\{D_{3}, D\right\}$-Type-1 and $\left\{D_{1}, D_{4}\right\}$-Type- 1 , we also have $\mid D^{\prime} \cap\left(\left(D_{3} \cup D\right)-\right.$
$\left.\left(D_{3} \cap D\right)\right) \mid=1$ and $\left|D^{\prime} \cap\left(\left(D_{1} \cup D_{4}\right)-\left(D_{1} \cap D_{4}\right)\right)\right|=1$. But $\left(\left(D_{3} \cup D\right)-\left(D_{3} \cap\right.\right.$ $D)) \cap\left(\left(D_{1} \cup D_{4}\right)-\left(D_{1} \cap D_{4}\right)\right)=\left\{x_{2}, x_{3}, x_{7}\right\}$, so $D^{\prime} \subseteq\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \cup D\right)$; a contradiction. Thus $x_{1} \notin D^{\prime}$. A similar argument shows $x_{3} \notin D^{\prime}$. But then D^{\prime} is not $\left\{D_{1}, D_{4}\right\}$-Type- 1 ; a contradiction. Hence 3.13 .1 holds.

Let D_{5} be a 4 -cocircuit of M that contains x_{10}. Now let φ be the permutation of $\left\{x_{1}, x_{2}, \ldots, x_{9}\right\}$ defined by

$$
\left(x_{1}, x_{3}\right)\left(x_{2}, x_{7}\right)\left(x_{4}, x_{9}\right)\left(x_{5}\right)\left(x_{6}, x_{8}\right)
$$

Noting that $\varphi\left(D_{1}\right)=D_{4}, \varphi\left(D_{2}\right)=D_{3}, \varphi\left(D_{3}\right)=D_{2}$, and $\varphi\left(D_{4}\right)=D_{1}$, it follows by 3.13 .1 that we may assume $x_{1} \in D_{5}$ and $x_{3} \notin D_{5}$. Since D_{2} is $\left(D_{3}, D_{4}\right)$-Type- 2 , it follows by Lemma 3.12 that D_{5} is $\left\{D_{3}, D_{4}\right\}$-Type- 1 , and so $x_{7} \in D_{5}$ but $x_{5} \notin D_{5}$. Therefore, as D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type- 1 , it follows by Lemma 3.8 that D_{5} contains one of x_{4} and x_{6}.

If $x_{4} \in D_{5}$, then $\left|D_{1} \cap D_{4} \cap D_{5}\right|=1$ and

$$
\left|D_{1} \cap D_{4}\right|=\left|D_{1} \cap D_{5}\right|=\left|D_{4} \cap D_{5}\right|=2
$$

contradicting Lemma 3.10. Thus $x_{6} \in D_{5}$ and so $D_{5}=\left\{x_{1}, x_{6}, x_{7}, x_{10}\right\}$. By (P2), M has a 4 -cocircuit D_{6} containing x_{11}. By 3.13.1, either $x_{1} \in D_{6}$ or $x_{3} \in D_{6}$. If $x_{1} \in D_{6}$, then, by the previous argument concerning D_{5} and now applied to D_{6}, we get $D_{6}=\left\{x_{1}, x_{6}, x_{7}, x_{11}\right\}$. But then $\left|D_{5} \cap D_{6}\right|=3$ and so, by Lemma $3.1, M \cong U_{3,6}$; a contradiction. Therefore $x_{1} \notin D_{6}$ and so $x_{3} \in D_{6}$. Observe that $\left|D_{2} \cap D_{5}\right|=2$ and D_{3} is $\left\{D_{2}, D_{5}\right\}$-Type- 2 and so, by Lemma $3.12, D_{6}$ is $\left\{D_{2}, D_{5}\right\}$-Type- 1 . But D_{6} is also $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{3}, D_{4}\right\}$-Type 1 by Lemma 3.12. Therefore D_{6} contains an element from each of the sets $\{1,6\},\{1,2\}$, and $\{1,5,8,9\}$. This is impossible as D_{6} has exactly four elements and $x_{1} \notin D_{6}$. We conclude that $D_{4} \neq\left\{x_{1}, x_{3}, x_{7}, x_{9}\right\}$.

We may now assume that $D_{4}=\left\{x_{1}, x_{4}, x_{7}, x_{9}\right\}$. Now $\left|D_{1} \cap D_{4}\right|=2$ and D_{3} is $\left\{D_{1}, D_{4}\right\}$-Type- 2 . Therefore, by Lemma 3.12,
3.13.2. if D is a 4-cocircuit of M such that $D \nsubseteq D_{1} \cup D_{3} \cup D_{4}$, then D is $\left\{D_{1}, D_{4}\right\}$-Type-1.

We next show that
3.13.3. M has a 4-cocircuit containing x_{1} and an element not in $\left\{x_{1}, x_{2}, \ldots, x_{9}\right\}$.

Let D_{5} be a cocircuit containing x_{10}. If $x_{1} \notin D_{5}$, then, as D_{5} is $\left\{D_{1}, D_{2}\right\}$ -Type-1 and, by 3.13.2, $\left\{D_{1}, D_{4}\right\}$-Type-1, it follows that $\left\{x_{2}, x_{4}\right\} \subseteq D_{5}$ and $\left\{x_{3}, x_{5}, x_{6}, x_{7}, x_{9}\right\} \cap D_{5}=\emptyset$. Further, as M has no disjoint 4-cocircuits, $D_{5} \cap D_{3} \neq \emptyset$. Therefore, $D_{5}=\left\{x_{2}, x_{4}, x_{8}, x_{10}\right\}$. As $|E(M)| \geq 11$, M has a 4 -cocircuit D_{6} containing x_{11}. By the same reasoning, $\left\{x_{2}, x_{4}, x_{8}\right\} \subseteq D_{6}$, so $\left|D_{5} \cap D_{6}\right|=3$; a contradiction. Thus 3.13.3 holds.

By 3.13.3, we may assume that M has a 4 -cocircuit D_{5} containing x_{1} and x_{10}. We show that
3.13.4. $x_{3} \notin D_{5}$.

If $x_{3} \in D_{5}$, then, as D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{1}, D_{4}\right\}$-Type- 1 , we have $\left\{x_{2}, x_{4}, x_{5}, x_{6}, x_{7}, x_{9}\right\} \cap D_{5}=\emptyset$. Furthermore, $\left|D_{1} \cap D_{5}\right|=2$ and so, by Lemma 3.8, the existence of the cocircuit D_{3} implies that $x_{8} \in D_{5}$. Therefore $D_{5}=\left\{x_{1}, x_{3}, x_{8}, x_{10}\right\}$. By (P2), M has a 4 -cocircuit D_{6} containing x_{11}. Since $\left|D_{3} \cap D_{5}\right|=2$ and D_{4} is $\left\{D_{3}, D_{5}\right\}$-Type-2, it follows by Lemma 3.12 that D_{6} is $\left\{D_{3}, D_{5}\right\}$-Type-1. As D_{6} is also $\left\{D_{1}, D_{2}\right\}$-Type- 1 and, by 3.13.2, $\left\{D_{1}, D_{4}\right\}$-Type-1, it is easily checked that $x_{1} \in D_{6}$, in which case $\left\{x_{2}, x_{4}, x_{5}, x_{7}, x_{10}\right\} \cap D_{6}=\emptyset$. This implies that each of $D_{6} \cap\{3,8\}$, $D_{6} \cap\{3,6\}$, and $D_{6} \cap\{3,9\}$ is non-empty, and so $x_{3} \in D_{6}$. But then $D_{1} \cap D_{5} \cap D_{6}=\{1,3\}$, contradicting Lemma 3.9. Thus $x_{3} \notin D_{5}$, thereby establishing 3.13.4.

Since D_{5} is $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{1}, D_{4}\right\}$-Type-1, but does not contain x_{3}, it follows that $\left|\left\{x_{5}, x_{6}\right\} \cap D_{5}\right|=1$ and $\left|\left\{x_{7}, x_{9}\right\} \cap D_{5}\right|=1$. In turn this implies D_{5} contains either x_{5} or x_{7}; otherwise, it is disjoint from D_{3}. If $x_{6} \in D_{5}$, then $x_{7} \in D_{5}$, in which case, $\left|D_{4} \cap D_{5}\right|=2$. But then $\mid D_{3} \cap$ $\left(D_{4} \cup D_{5}\right) \mid=1$, contradicting Lemma 3.8. Therefore $x_{6} \notin D_{5}$, so $x_{5} \in D_{5}$. Then $\left|D_{2} \cap D_{5}\right|=2$, and so, by Lemma 3.8, $\left|D_{3} \cap\left(D_{2} \cup D_{5}\right)\right| \geq 2$, which implies $x_{7} \in D_{5}$. By (P2), M has a 4 -cocircuit D_{6} containing x_{11}. If $x_{1} \in D_{6}$, then, by an argument analogous to that which determined D_{5}, we have $D_{6}=\left\{x_{1}, x_{5}, x_{7}, x_{11}\right\}$ and so $\left|D_{5} \cap D_{6}\right|=3$; a contradiction. Thus $x_{1} \notin D_{6}$. Since D_{6} is $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{1}, D_{4}\right\}$-Type 1 , it is easily checked that $D_{6}=\left\{x_{2}, x_{3}, x_{4}, x_{11}\right\}$. But then $\left|D_{1} \cap D_{6}\right|=3$; a contradiction to Lemma 3.1. This completes the proof of Lemma 3.13.

Lemma 3.14. Let $|E(M)| \geq 11$, and suppose M has no two disjoint 4cocircuits. Let D_{1}, D_{2}, and D_{3} be distinct 4-cocircuits of M such that $\mid D_{1} \cap$ $D_{2} \mid=2$ and $D_{3} \nsubseteq D_{1} \cup D_{2}$. Then D_{3} is not $\left\{D_{1}, D_{2}\right\}$-Type- 3 .

Proof. Suppose that D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type-3. Then, without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}, D_{2}=\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$, and $D_{3}=$ $\left\{x_{3}, x_{4}, x_{5}, x_{7}\right\}$. Note that D_{2} is $\left(D_{1}, D_{3}\right)$-Type- 3 .
3.14.1. Let D be a 4-cocircuit of M such that $D \nsubseteq D_{1} \cup D_{2} \cup D_{3}$. Then D is neither $\left\{D_{1}, D_{2}\right\}$-Type-3 nor $\left\{D_{1}, D_{3}\right\}$-Type-3.

Without loss of generality, we may assume $x_{8} \in D$. First suppose that D is $\left\{D_{1}, D_{2}\right\}$-Type-3. If D is $\left(D_{1}, D_{2}\right)$-Type- 3 , then $D_{1} \cap D_{3} \cap D=\left\{x_{3}, x_{4}\right\}$, contradicting Lemma 3.9. Therefore assume that D is (D_{2}, D_{1})-Type-3. By symmetry, we may assume $D=\left\{x_{3}, x_{5}, x_{6}, x_{8}\right\}$.

By (P2), M has a 4 -cocircuit D^{\prime} containing x_{9}. Since D^{\prime} is not $\left\{D_{1}, D_{2}\right\}$ -Type-2 by Lemma 3.13, it follows by Lemmas 3.9 and 3.13 that D^{\prime} is neither $\left\{D_{1}, D_{2}\right\}$-Type-3 nor $\left\{D_{1}, D_{2}\right\}$-Type- 2 . Therefore, by Lemma $3.11, D^{\prime}$ is $\left\{D_{1}, D_{2}\right\}$-Type-1. By considering the way in which D_{1}, D_{2}, D_{3}, and D relate to each other, we may assume, by symmetry, that $x_{1} \in D^{\prime}$ and that $\left|D^{\prime} \cap\left\{x_{3}, x_{4}\right\}\right|=1$ and $\left|D^{\prime} \cap\left\{x_{5}, x_{6}\right\}\right|=0$. If $x_{4} \in D^{\prime}$, then $x_{8} \in D^{\prime} ;$ otherwise, $D \cap D^{\prime}=\emptyset$. But then, D^{\prime} is $\left\{D_{3}, D\right\}$-Type- 2 , contradicting Lemma 3.13 as $\left|D_{3} \cap D\right|=2$.

Therefore $x_{3} \in D^{\prime}$. Now $x_{8} \in D^{\prime}$; otherwise D^{\prime} is $\left\{D_{2}, D\right\}$-Type- 2 , contradicting Lemma 3.13 as $\left|D_{2} \cap D\right|=2$. Hence $D^{\prime}=\left\{x_{1}, x_{3}, x_{8}, x_{9}\right\}$. By (P2), M has a 4-cocircuit $D^{\prime \prime}$ containing x_{10}. As above, $D^{\prime \prime}$ is $\left\{D_{1}, D_{2}\right\}$ -Type-1, and $\left|\left\{x_{1}, x_{2}\right\} \cap D^{\prime \prime}\right|=1$ by Lemma 3.9. By Lemma $3.13, D^{\prime \prime}$ is not $\left\{D_{3}, D\right\}$-Type-2. Furthermore, as either $\left\{x_{1}, x_{10}\right\} \subseteq D^{\prime \prime}$ or $\left\{x_{2}, x_{10}\right\} \subseteq D^{\prime \prime}$, it follows that $D^{\prime \prime}$ is not $\left\{D_{3}, D\right\}$-Type-3. Thus, by Lemma 3.11, $D^{\prime \prime}$ is $\left\{D_{3}, D\right\}$-Type-1, and so $\left|\left\{x_{3}, x_{5}\right\} \cap D^{\prime \prime}\right|=1$. Say $x_{1} \in D^{\prime \prime}$. Then, by Lemma $3.9, x_{3} \notin D^{\prime \prime}$, so $x_{5} \in D^{\prime \prime}$. But then $D^{\prime \prime}$ is $\left\{D_{1}, D_{3}\right\}$-Type- 3 and $\left\{D, D^{\prime}\right\}$-Type-3, by Lemma 3.11 and Lemma 3.13 , and so $\left|\left\{x_{2}, x_{7}\right\} \cap D^{\prime \prime}\right|=1$ and $\left|\left\{x_{6}, x_{9}\right\} \cap D^{\prime \prime}\right|=1$; a contradiction. Thus $x_{1} \notin D^{\prime \prime}$ and so $x_{2} \in D^{\prime \prime}$. If $x_{3} \in D^{\prime \prime}$, then $D^{\prime \prime}$ is $\left\{D_{2}, D\right\}$-Type- 3 , and so $D^{\prime \prime}=\left\{x_{2}, x_{3}, x_{8}, x_{10}\right\}$. But then $D \cap D^{\prime} \cap D^{\prime \prime}=\left\{x_{3}, x_{8}\right\}$, contradicting Lemma 3.9. Therefore $x_{3} \notin D^{\prime \prime}$ and $x_{5} \in D^{\prime \prime}$. So $D^{\prime \prime}$ is $\left\{D_{1}, D^{\prime}\right\}$-Type- 3 , in which case $\left|\left\{x_{4}, x_{8}, x_{9}\right\} \cap D^{\prime \prime}\right|=2$; a contradiction. Hence D is not $\left\{D_{1}, D_{2}\right\}$-Type- 3 . Since D_{2} is $\left(D_{1}, D_{3}\right)$-Type- 3 , it follows by symmetry that D is not $\left\{D_{1}, D_{3}\right\}$ -Type-3. Thus 3.14.1 holds.

By Lemma 3.13 and 3.14.1, every 4-cocircuit D of M such that $D \nsubseteq$ $D_{1} \cup D_{2} \cup D_{3}$ is both $\left\{D_{1}, D_{2}\right\}$-Type- 1 and $\left\{D_{1}, D_{3}\right\}$-Type- 1 . In fact, we show that
3.14.2. D is both $\left(D_{1}, D_{2}\right)$-Type- 1 and $\left(D_{1}, D_{3}\right)$-Type- 1 .

Without loss of generality, we may assume that $x_{8} \in D$. Note that D is $\left(D_{1}, D_{2}\right)$-Type- 1 if and only if it is ($\left.D_{1}, D_{3}\right)$-Type- 1 . Suppose D is neither $\left(D_{1}, D_{2}\right)$-Type- 1 nor $\left(D_{1}, D_{3}\right)$-Type- 1 . Then D is $\left(D_{2}, D_{1}\right)$-Type- 1 and $\left(D_{3}, D_{1}\right)$-Type-1. But the former implies that $D \cap\left\{x_{3}, x_{4}\right\}=\emptyset$, while the latter implies $D \cap\left\{x_{3}, x_{4}\right\} \neq \emptyset$; a contradiction. Thus 3.14.2 holds.

By (P2), M has a 4 -cocircuit D_{4} that contains x_{8}. By 3.14 .2 , we may assume $D_{4}=\left\{x_{1}, x_{3}, x_{8}, x_{9}\right\}$. Furthermore, M has a 4-cocircuit D_{5} containing x_{10}. By 3.14.2, D_{5} is $\left(D_{1}, D_{2}\right)$-Type- 1 and $\left(D_{1}, D_{3}\right)$-Type-1. This implies $\left|\left\{x_{1}, x_{2}\right\} \cap D_{5}\right|=1$ and $\left|\left\{x_{3}, x_{4}\right\} \cap D_{5}\right|=1$. By Lemma 3.9, $\left\{x_{1}, x_{3}\right\} \nsubseteq D_{5}$ and so $D_{1} \cap D_{5}$ is one of $\left\{x_{1}, x_{4}\right\}$, $\left\{x_{2}, x_{3}\right\}$, and $\left\{x_{2}, x_{4}\right\}$.

Say $\left\{x_{1}, x_{4}\right\} \subseteq D_{5}$. Then $\left\{x_{8}, x_{9}\right\} \cap D_{5} \neq \emptyset$; otherwise, $\left|D_{2} \cap D_{4} \cap D_{5}\right|=1$ and $\left|D_{2} \cap D_{4}\right|=\left|D_{2} \cap D_{5}\right|=\left|D_{4} \cap D_{5}\right|=1$, and so, by Lemma 3.6,
$|E(M)|=10$. Therefore, we may assume $D_{5}=\left\{x_{1}, x_{4}, x_{8}, x_{10}\right\}$. But then $\left|D_{1} \cap D_{4} \cap D_{5}\right|=1$ and $\left|D_{1} \cap D_{4}\right|=\left|D_{1} \cap D_{5}\right|=\left|D_{4} \cap D_{5}\right|=2$, contradicting Lemma 3.10. Similarly $\left\{x_{2}, x_{3}\right\} \nsubseteq D_{5}$, and therefore $\left\{x_{2}, x_{4}\right\} \subseteq D_{5}$. Now, $D_{5} \cap\left\{x_{8}, x_{9}\right\} \neq \emptyset$; otherwise, D_{4} and D_{5} are disjoint. Hence, without loss of generality, $D_{5}=\left\{x_{2}, x_{4}, x_{8}, x_{10}\right\}$. By (P2), M has a 4 -cocircuit D_{6} containing x_{11}. As the restrictions on D_{5} also apply to D_{6}, we have $\left\{x_{2}, x_{4}\right\} \subseteq D_{6}$, which contradicts Lemma 3.9 as $D_{1} \cap D_{5}=\left\{x_{2}, x_{4}\right\}$. This completes the proof of Lemma 3.14.

At last we show that M has two disjoint 4-cocircuits if $|E(M)| \geq 11$.
Lemma 3.15. Let $|E(M)| \geq 11$. Then M has two disjoint 4 -cocircuits.

Proof. Suppose that M has no two disjoint 4-cocircuits. By Lemma 3.7, M has 4 -cocircuits D_{1} and D_{2} with $\left|D_{1} \cap D_{2}\right|=2$. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $D_{2}=\left\{x_{1}, x_{2}, x_{5}, x_{6}\right\}$. By (P2), M has a 4 -cocircuit D_{3} containing x_{7}. Lemmas 3.13 and 3.14 together with Lemma 3.11 imply that D_{3} is $\left\{D_{1}, D_{2}\right\}$-Type-1. Therefore, without loss of generality, $D_{3}=$ $\left\{x_{1}, x_{3}, x_{7}, x_{8}\right\}$. Let D be a 4 -cocircuit of M such that $D \nsubseteq D_{1} \cup D_{2} \cup D_{3}$. Since $\left|D_{1} \cap D_{3}\right|=2$, it again follows by Lemmas 3.11, 3.13, and 3.14 that D is $\left\{D_{1}, D_{2}\right\}$-Type- 1 as well as $\left\{D_{1}, D_{3}\right\}$-Type- 1 . We next show
3.15.1. D is not both $\left(D_{2}, D_{1}\right)$-Type-1 and $\left(D_{3}, D_{1}\right)$-Type-1.

If D is both (D_{2}, D_{1})-Type- 1 and (D_{3}, D_{1})-Type- 1 , then, without loss of generality, $\left\{x_{5}, x_{7}\right\} \subseteq D$. In turn, this implies $x_{1} \in D$, so we may assume $D=\left\{x_{1}, x_{5}, x_{7}, x_{9}\right\}$. By (P2), M has a 4 -cocircuit D^{\prime} containing x_{10}. As $\left|D_{2} \cap D\right|=2$ and $\left|D_{3} \cap D\right|=2$, it follows by Lemmas 3.11, 3.13, and 3.14 that D^{\prime} is $\left\{D_{1}, D_{2}\right\}$-Type-1, $\left\{D_{1}, D_{3}\right\}$-Type- $1,\left\{D_{2}, D\right\}$-Type- 1 , and $\left\{D_{3}, D\right\}$ -Type-1. This implies that $x_{1} \in D^{\prime}$, and it is easily checked that either $\left\{x_{4}, x_{9}\right\} \subseteq D^{\prime}$ or $\left\{x_{6}, x_{8}\right\} \subseteq D^{\prime}$. If $\left\{x_{4}, x_{9}\right\} \subseteq D^{\prime}$, then $D^{\prime}=\left\{x_{1}, x_{4}, x_{9}, x_{10}\right\}$. But then $\left|D_{2} \cap D_{3} \cap D^{\prime}\right|=1$ and $\left|D_{2} \cap D_{3}\right|=\left|D_{2} \cap D^{\prime}\right|=\left|D_{3} \cap D^{\prime}\right|=1$, and so, by Lemma 3.6, $|E(M)|=10$; a contradiction. Similarly, if $\left\{x_{6}, x_{8}\right\} \subseteq D^{\prime}$, then $\left|D_{1} \cap D \cap D^{\prime}\right|=1$ and $\left|D_{1} \cap D\right|=\left|D_{1} \cap D^{\prime}\right|=\left|D \cap D^{\prime}\right|=1$ and we contradict Lemma 3.6. This proves 3.15.1.

In addition to 3.15.1, we also have
3.15.2. $\left\{x_{2}, x_{3}\right\} \subseteq D$.

By 3.15.1, D is at least one of $\left(D_{1}, D_{2}\right)$-Type-1 and $\left(D_{1}, D_{3}\right)$-Type-1. If D is (D_{1}, D_{2})-Type-1, then, since D is $\left\{D_{1}, D_{3}\right\}$-Type- 1 , we have $\mid\left\{x_{1}, x_{3}\right\} \cap$ $D \mid=1$. If $x_{1} \in D$, then $x_{4} \in D$ and $D \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)=\left\{x_{1}, x_{4}\right\}$, and so $\left|D_{2} \cap D_{3} \cap D\right|=1$ and $\left|D_{2} \cap D_{3}\right|=\left|D_{2} \cap D\right|=\left|D_{3} \cap D\right|=1$. But then, by Lemma 3.6, $|E(M)|=10$; a contradiction. Therefore $x_{1} \notin D$, and so
$\left\{x_{2}, x_{3}\right\} \subseteq D$. Similarly, if D is $\left(D_{1}, D_{3}\right)$-Type-1, we have $\left\{x_{2}, x_{3}\right\} \subseteq D$. Thus 3.15.2 holds.

By (P2), M has a 4 -cocircuit D_{4} containing x_{9}. By 3.15.2, $\left\{x_{2}, x_{3}\right\} \subseteq D_{4}$. Therefore, as $|E(M)| \geq 11$, we deduce that M has a 4 -cocircuit D_{5} such that $D_{5} \nsubseteq D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$. But then, by 3.15.2, we have $\left\{x_{2}, x_{3}\right\} \subseteq D_{5}$. Therefore $D_{1} \cap D_{4} \cap D_{5}=\left\{x_{2}, x_{3}\right\}$, contradicting Lemma 3.9. This last contradiction completes the proof of Lemma 3.15.

Having established that M has two disjoint 4-cocircuits if $|E(M)| \geq 11$, the last step before proving the necessary direction of Theorem 1.4 for $|E(M)| \geq 16$ is to show that $E(M)$ can be partitioned into 4-cocircuits if $|E(M)| \geq 16$. Before showing this, we prove two preliminary results.

Lemma 3.16. Let $X \subseteq E(M)$ such that $M \mid X \cong M\left(K_{2,4}\right)$, and let D be a 4 -cocircuit of M meeting X. Then either D contains exactly one element from each of the four series pairs of $M \mid X$, or $D \cap X$ is a series pair of $M \mid X$.

Proof. Suppose the lemma does not hold. For all $i \in\{1,2,3,4\}$, let $\left\{x_{i}, y_{i}\right\}$ denote the series pairs of $M \mid X$. Since M is 4-connected, $D \cap X \neq$ $\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\}$ for distinct $i, j \in\{1,2,3,4\}$. Therefore, for some i and j, we have $\left|D \cap\left\{x_{i}, y_{i}\right\}\right|=1$ and $\left|D \cap\left\{x_{j}, y_{j}\right\}\right|=0$. But $\left\{x_{i}, x_{j}, y_{i}, y_{j}\right\}$ is a circuit; a contradiction. Thus the lemma holds.

Lemma 3.17. If $|E(M)| \geq 13$, then M has three pairwise-disjoint 4cocircuits.

Proof. Suppose that $|E(M)| \geq 13$ and M has no three pairwise-disjoint 4cocircuits. By Lemma 3.15, M has two disjoint 4 -cocircuits, D_{1} and D_{2} say. Moreover, by Lemma 3.5, $M \mid\left(D_{1} \cup D_{2}\right) \cong M\left(K_{2,4}\right)$. Without loss of generality, let $D_{1}=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $D_{2}=\left\{x_{5}, x_{6}, x_{7}, x_{8}\right\}$, and let $\left\{x_{1}, x_{5}\right\},\left\{x_{2}, x_{6}\right\},\left\{x_{3}, x_{7}\right\}$, and $\left\{x_{4}, x_{8}\right\}$ be the series pairs in $M \mid\left(D_{1} \cup D_{2}\right)$. By (P2), M has a 4 -cocircuit D_{3} containing x_{9}. Since $D_{3} \cap\left(D_{1} \cup D_{2}\right)$ is nonempty, it follows by Lemma 3.16 that $D_{3} \cap\left(D_{1} \cup D_{2}\right)$ is a series pair of $M \mid\left(D_{1} \cup D_{2}\right)$. Thus, without loss of generality, $D_{3}=\left\{x_{1}, x_{5}, x_{9}, x_{10}\right\}$. Let D be a 4 -cocircuit of M such that $D \nsubseteq D_{1} \cup D_{2} \cup D_{3}$. We next show that
3.17.1. $D_{3} \cap D \neq \emptyset$.

If $D_{3} \cap D=\emptyset$, then, as $D \cap\left(D_{1} \cup D_{2}\right)$ is nonempty, we may assume by Lemma 3.16 that $D=\left\{x_{2}, x_{6}, x_{11}, x_{12}\right\}$. By Lemma 3.5, $M \mid\left(D_{3} \cup D\right) \cong$ $M\left(K_{2,4}\right)$ and so, by orthogonality, $\left\{x_{1}, x_{2}\right\}$ and $\left\{x_{5}, x_{6}\right\}$ are series pairs in $M \mid\left(D_{3} \cup D\right)$. Thus, without loss of generality, we may assume $\left\{x_{9}, x_{11}\right\}$ and $\left\{x_{10}, x_{12}\right\}$ are also series pairs in $M \mid\left(D_{3} \cup D\right)$.

Now M has a 4-cocircuit D^{\prime} containing x_{13}. Furthermore, $D^{\prime} \cap\left(D_{1} \cup D_{2}\right)$ and $D^{\prime} \cap\left(D_{3} \cup D\right)$ are both nonempty. By Lemma 3.16,

$$
D^{\prime} \cap\left(D_{1} \cup D_{2}\right) \in\left\{\left\{x_{1}, x_{5}\right\},\left\{x_{2}, x_{6}\right\},\left\{x_{3}, x_{7}\right\},\left\{x_{4}, x_{8}\right\}\right\}
$$

and

$$
D^{\prime} \cap\left(D_{3} \cup D\right) \in\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{5}, x_{6}\right\},\left\{x_{9}, x_{11}\right\},\left\{x_{10}, x_{12}\right\}\right\} .
$$

As $\left|D^{\prime}\right|=4$, the intersections $D^{\prime} \cap\left(D_{1} \cup D_{2}\right)$ and $D^{\prime} \cap\left(D_{3} \cup D\right)$ are not disjoint. But then D^{\prime} meets a circuit of $M \mid\left(D_{1} \cup D_{2}\right)$ in exactly one element; a contradiction. Thus 3.17 .1 holds.

We also have
3.17.2. $\left\{x_{1}, x_{5}\right\} \cap D=\emptyset$.

If $x_{1} \in D$, then either $x_{5} \in D$, or D meets each of $\left\{x_{2}, x_{6}\right\},\left\{x_{3}, x_{7}\right\}$, and $\left\{x_{4}, x_{8}\right\}$. In the latter case, $D \subseteq D_{1} \cup D_{2} \cup D_{3}$; a contradiction. Then $x_{9}, x_{10} \notin D$ by Lemma 3.1, so we may assume that $D=\left\{x_{1}, x_{5}, x_{11}, x_{12}\right\}$. Now $\left(D_{3} \cup D\right)-x_{1}$ contains a cocircuit and, by orthogonality, this cocircuit avoids x_{5}. Hence, as M is 4 -connected, $\left\{x_{9}, x_{10}, x_{11}, x_{12}\right\}$ is a 4 -cocircuit of M disjoint from D_{1} and D_{2}; a contradiction. Thus $x_{1} \notin D$ and, similarly, $x_{5} \notin D$, and 3.17.2 holds.

By (P2), M has a 4 -cocircuit D_{4} containing x_{11}. By 3.17.1 and 3.17.2, we may assume $x_{9} \in D_{4}$. Furthermore, as D_{4} meets $D_{1} \cup D_{2}$, we may assume that by Lemma 3.16 that $D_{4}=\left\{x_{2}, x_{6}, x_{9}, x_{11}\right\}$. Now M has a 4 -cocircuit D_{5} containing x_{12}. By 3.17.1 and 3.17.2, $D_{3} \cap D_{5} \neq \emptyset$ and $\left\{x_{1}, x_{5}\right\} \cap D_{5}=\emptyset$. Moreover, replacing D_{3} with D_{4} in the above argument shows that $D_{4} \cap D_{5} \neq \emptyset$ and $\left\{x_{2}, x_{6}\right\} \cap D_{5}=\emptyset$. Therefore we may assume that $D_{5}=\left\{x_{3}, x_{7}, x_{9}, x_{12}\right\}$. Now M has a 4 -circuit C containing $\left\{x_{4}, x_{9}\right\}$. By orthogonality, C meets each of $\left\{x_{1}, x_{5}, x_{10}\right\},\left\{x_{2}, x_{6}, x_{11}\right\}$, and $\left\{x_{3}, x_{7}, x_{12}\right\}$. But then $|C| \geq 5$; a contradiction. This completes the proof of Lemma 3.17.

The next lemma extends Lemmas 3.15 and 3.17.
Lemma 3.18. If $|E(M)| \geq 16$, then $E(M)$ can be partitioned into 4-element blocks, where each block is a 4-cocircuit.

Proof. Suppose that $|E(M)| \geq 16$. We first show that M has four pairwisedisjoint 4-cocircuits. By Lemma 3.17, M has three pairwise-disjoint 4cocircuits, D_{1}, D_{2}, and D_{3} say. Moreover, by Lemma 3.5, we have $M \mid\left(D_{i} \cup D_{j}\right) \cong M\left(K_{2,4}\right)$ for all distinct $i, j \in\{1,2,3\}$. Let z_{1}, z_{2}, z_{3}, and z_{4} be distinct elements of $E(M)-\left(D_{1} \cup D_{2} \cup D_{3}\right)$. By (P2), each of these elements is in a 4-cocircuit, Z_{1}, Z_{2}, Z_{3}, and Z_{4} say, of M. If $Z_{i} \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)=\emptyset$ for some i, then M has four pairwise-disjoint

4-cocircuits. Therefore assume $Z_{i} \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)$ is nonempty for all i. Then, by Lemma 3.16, we have $\left|Z_{i} \cap\left(D_{1} \cup D_{2} \cup D_{3}\right)\right|=3$ and $\left|Z_{i} \cap D_{1}\right|=\left|Z_{i} \cap D_{2}\right|=\left|Z_{i} \cap D_{3}\right|=1$ for all i. If, for distinct i and j, we have $Z_{i} \cap Z_{j} \neq \emptyset$, then it is easily checked that $\left|Z_{i} \cap Z_{j}\right|=3$, contradicting Lemma 3.1. It now follows that Z_{1}, Z_{2}, Z_{3}, and Z_{4} are four pairwise-disjoint 4-cocircuits of M.

Now suppose that $E(M)$ cannot be partitioned into 4-cocircuits. Let $\left\{D_{1}, D_{2}, \ldots, D_{n}\right\}$ be a maximum-sized set of pairwise-disjoint 4-cocircuits of M. Then, by above, $n \geq 4$. Let x be an element of $E(M)-\left(D_{1} \cup\right.$ $D_{2} \cup \cdots \cup D_{n}$). By (P2), M has a 4 -cocircuit D containing x. Furthermore, $D \cap\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n}\right) \neq \emptyset$. Without loss of generality, we may assume that $D \cap D_{1} \neq \emptyset$, and so $D \cap\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4}\right) \neq \emptyset$. But, for all distinct $i, j \in\{1,2,3,4\}$, we have $M \mid\left(D_{i} \cup D_{j}\right) \cong M\left(K_{2,4}\right)$ and so, by Lemma 3.16, $\mid D \cap\left(D_{1} \cup D_{2} \cup D_{3} \cup D_{4} \mid \geq 4\right.$; a contradiction. The lemma now follows.

We are now ready to prove the necessary direction of Theorem 1.4 when $|E(M)| \geq 16$.

Proof of Theorem 1.4 for $|E(M)| \geq 16$. Suppose $|E(M)| \geq 16$. Then, by Lemma 3.18, there is a partition of $E(M)$ into 4-cocircuits $D_{1}, D_{2}, \ldots, D_{n}$, where $D_{i}=\left\{w_{i}, x_{i}, y_{i}, z_{i}\right\}$ for all i. By Lemma 3.5, $M \mid\left(D_{1} \cup\right.$ $\left.D_{i}\right) \cong M\left(K_{2,4}\right)$ for all $i \in\{2,3, \ldots, n\}$, so we may assume M has 4 -circuits $\left\{w_{1}, x_{1}, w_{i}, x_{i}\right\}, \quad\left\{w_{1}, y_{1}, w_{i}, y_{i}\right\}, \quad\left\{w_{1}, z_{1}, w_{i}, z_{i}\right\}, \quad\left\{x_{1}, y_{1}, x_{i}, y_{i}\right\}$, $\left\{x_{1}, z_{1}, x_{i}, z_{i}\right\}$, and $\left\{y_{1}, z_{1}, y_{i}, z_{i}\right\}$ for all such i. Consider the 4 -circuits $\left\{w_{1}, x_{1}, w_{i}, x_{i}\right\}$ and $\left\{w_{1}, x_{1}, w_{j}, x_{j}\right\}$ for some distinct $i, j \in\{2,3, \ldots, n\}$. By circuit elimination and orthogonality, $\left\{w_{i}, x_{i}, w_{j}, x_{j}\right\}$ is a 4 -circuit of M. Similarly, for all distinct $i, j \in\{2,3, \ldots, n\}$, we have $\left\{w_{i}, y_{i}, w_{j}, y_{j}\right\}$, $\left\{w_{i}, z_{i}, w_{j}, z_{j}\right\},\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\},\left\{x_{i}, z_{i}, x_{j}, y_{j}\right\}$, and $\left\{y_{i}, z_{i}, y_{j}, z_{j}\right\}$ are 4-circuits of M. In turn, as $M \mid\left(D_{i} \cup D_{j}\right) \cong M\left(K_{2,4}\right)$ for all distinct i and j, we have
3.18.1. $\left\{w_{i}, w_{j}\right\},\left\{x_{i}, x_{j}\right\},\left\{y_{i}, y_{j}\right\}$, and $\left\{z_{i}, z_{j}\right\}$ are the series pairs in $M \mid\left(D_{i} \cup D_{j}\right)$ for all distinct i and j.

Now consider $K_{4, n}$, where $n \geq 4$. Label the edge set of $K_{4, n}$ so that

$$
\left\{\left\{w_{1}, x_{1}, y_{1}, z_{1}\right\},\left\{w_{2}, x_{2}, y_{2}, z_{2}\right\}, \ldots,\left\{w_{n}, x_{n}, y_{n}, z_{n}\right\}\right\}
$$

is a partition of $E\left(K_{4, n}\right)$, where each block is a bond of $K_{4, n}$, and $\left\{w_{i}, x_{i}, w_{j}, x_{j}\right\},\left\{w_{i}, y_{i}, w_{j}, y_{j}\right\},\left\{w_{i}, z_{i}, w_{j}, z_{j}\right\},\left\{x_{i}, y_{i}, x_{j}, y_{j}\right\},\left\{x_{i}, z_{i}, x_{j}, z_{j}\right\}$, and $\left\{y_{i}, z_{i}, y_{j}, z_{j}\right\}$ are 4 -cycles of $K_{4, n}$ for distinct $i, j \in\{1,2, \ldots, n\}$. We next show that the identity map φ from $E\left(M\left(K_{4, n}\right)\right)$ to $E(M)$ is a weak map from $M\left(K_{4, n}\right)$ to M. Let C be a circuit of $M\left(K_{4, n}\right)$. Then $|C| \in\{4,6,8\}$. If C is a 4 -circuit, then, by above, $\varphi(C)$ is a 4 -circuit of M. Now assume that $|C|=6$. Then, without loss of generality, we may assume

$$
C=\left\{w_{i}, x_{i}, x_{j}, y_{j}, y_{k}, w_{k}\right\}
$$

where i, j, and k are distinct elements in $\{1,2, \ldots, n\}$. Using circuit elimination on the 4 -circuits $\left\{w_{i}, x_{i}, w_{j}, x_{j}\right\}$ and $\left\{w_{j}, y_{j}, w_{k}, y_{k}\right\}$ of M, it follows that $\left\{w_{i}, x_{i}, x_{j}, y_{j}, y_{k}, w_{k}\right\}$ contains a circuit of M. By orthogonality and 3.18.1, it is easily checked that

$$
\left\{w_{i}, x_{i}, x_{j}, y_{j}, y_{k}, w_{k}\right\}
$$

is a 6 -circuit of M. Thus if C is a 6 -circuit of $M\left(K_{4, n}\right)$, then $\varphi(C)$ is a 6 circuit of M. Lastly, assume that $|C|=8$. Then, without loss of generality, we may assume

$$
C=\left\{w_{i}, w_{j}, x_{j}, x_{k}, y_{k}, y_{l}, z_{l}, z_{i}\right\}
$$

where i, j, k, and l are distinct elements in $\{1,2, \ldots, n\}$. Now $\left\{w_{i}, w_{j}, x_{j}, x_{k}, y_{k}, y_{i}\right\}$ and $\left\{y_{i}, y_{l}, z_{l}, z_{i}\right\}$ are circuits of M. By circuit elimination, $\left\{w_{i}, w_{j}, x_{j}, x_{k}, y_{k}, y_{l}, z_{l}, z_{i}\right\}$ contains a circuit of M. If this last set is not a circuit, then, by orthogonality and 3.18.1, it contains a 6 -circuit of M. Without loss of generality, we may assume that this 6 -circuit is $\left\{w_{i}, w_{j}, x_{j}, x_{k}, y_{k}, z_{i}\right\}$. But then, as $\left\{x_{j}, y_{j}, x_{k}, y_{k}\right\}$ is a 4 -circuit of M, it follows by circuit elimination that

$$
X=\left\{w_{i}, w_{j}, x_{j}, x_{k}, z_{i}, y_{j}\right\}
$$

contains a circuit of M. By orthogonality and 3.18.1, X contains no circuit of M. Thus C is an 8 -circuit of M. It now follows that if C is a circuit of $M\left(K_{4, n}\right)$, then $\varphi(C)$ is a circuit of M. Hence M is a weak-map image of $M\left(K_{4, n}\right)$ under φ.

We next show that
3.18.2. $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right) \cong M\left(K_{4,4}\right)$ for all distinct $i, j, k, l \in$ $\{1,2, \ldots, n\}$.

By above, $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)$ is a weak-map image of $M\left(K_{4,4}\right)$. Furthermore, as $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)$ has an 8-circuit, it follows that $r\left(M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right) \geq 7$. Since $M \mid\left(D_{i} \cup D_{j}\right) \cong M\left(K_{2,4}\right)$, we have $r\left(M \mid\left(D_{i} \cup D_{j}\right)\right)=5$ and so, by the 4 -circuits of M established above,

$$
r\left(M \mid\left(D_{i} \cup D_{j} \cup D_{k}\right)\right) \leq 6
$$

In turn, as D_{l} is a cocircuit of $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)$, we deduce that $r\left(M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right) \leq 7$. Thus $r\left(M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right)=7$, that is, $r\left(M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right)=r\left(M\left(K_{4,4}\right)\right)$. Since $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)$ is connected, it follows by Theorem 1.5 that $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right) \cong M\left(K_{4,4}\right)$. Thus 3.18.2 holds.

We next prove that $r(M)=r\left(M\left(K_{4, n}\right)\right)$. To do this, we show, by induction, that for all 4 -connected matroids M^{\prime} satisfying (P2) and whose ground set can be partitioned into $m 4$-cocircuits, where $m \geq 4$, we have $r\left(M^{\prime}\right)=r\left(M\left(K_{4, m}\right)\right)$. If $n=4$, then, by 3.18.2, $r(M)=r\left(M\left(K_{4,4}\right)\right)$. Therefore suppose that $n \geq 5$ and that, for all matroids M^{\prime} as described
above, with $4 \leq m \leq n-1$, we have $r\left(M^{\prime}\right)=r\left(M\left(K_{4, m}\right)\right)$. Let M^{-}denote the matroid $M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)$. We first show that M^{-}satisfies (P2). Evidently, every element of M^{-}is in a 4 -cocircuit. Let x and y be distinct elements of M^{-}. If x and y are in distinct 4 -cocircuits D_{i} and D_{j} of M^{-}, then, by orthogonality and M satisfying (P2), M^{-}has a 4 -circuit containing $\{x, y\}$. Thus assume x and y are in the same 4 -cocircuit D_{i} of M^{-}. By considering D_{i} with D_{1} if $i \neq 1$ or D_{2} if $i=1$, it follows that M^{-} has a 4 -circuit containing $\{x, y\}$. Lastly, if M^{-}is not 4 -connected, then it has a 2 - or 3 -separation (A, B). Since $n \geq 5$, it is easily checked that, for distinct i, j, k, and l, there are four 4 -cocircuits D_{i}, D_{j}, D_{k}, and D_{l} of M^{-} such that $\left|A \cap\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right| \geq 3$ and $\mid B \cap\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right) \geq 3$. Now, by [3, Lemma 8.2.3],

$$
\begin{aligned}
2 \geq & \geq(A)+r(B)-r\left(M^{-}\right) \\
\geq & r\left(A \cap\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right)+r\left(B \cap\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)\right) \\
& -r\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right) .
\end{aligned}
$$

But then $M \mid\left(D_{i} \cup D_{j} \cup D_{k} \cup D_{l}\right)$ is not 4-connected, contradicting 3.18.2. It follows that M^{-}is 4 -connected, and so M^{-}satisfies (P2). By induction,

$$
r\left(M^{-}\right)=r\left(M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)\right)=r\left(M\left(K_{4, n-1}\right)\right)
$$

and so, as D_{n} is a cocircuit of M,

$$
r(M)=r\left(M \mid\left(D_{1} \cup D_{2} \cup \cdots \cup D_{n-1}\right)\right)+1=r\left(M\left(K_{4, n}\right)\right) .
$$

Finally, as M is connected, it now follows by Theorem 1.5 that $M \cong$ $M\left(K_{4, n}\right)$, thereby completing the proof of Theorem 1.4.

Acknowledgements

The authors would like to thank the reviewer for their careful reading of this article and thoughtful suggestions regarding its improvement.

References

[1] D. Lucas, Weak maps of combinatorial geometries, Trans. Amer. Math. Soc. 206 (1975) 247-279.
[2] J. Miller, Matroids in which Every Pair of Elements Belongs to Both a 4-Circuit and a 4-Cocircuit, MSc thesis, Victoria University of Wellington, 2013.
[3] J. Oxley, Matroid Theory, Second edition, Oxford University Press, New York, 2011.
[4] S. Pfeil, On Properties of Matroid Connectivity, PhD thesis, Louisiana State University, 2016.
[5] P.D. Seymour, Decomposition of regular matroids, J. Combin. Theory Ser. B 28 (1980) 305-359.
[6] W.T. Tutte, Connectivity in matroids, Canad. J. Math. 18 (1966) 1301-1324.

Appendix

Let M be a 4 -connected matroid satisfying (P2) with $|E(M)| \leq 15$. Then M is one of thirty-five matroids. These thirty-five matroids comprise of $U_{3,6}$, twenty-one 8 -element paving matroids, ten 9 -element paving matroids, R_{10}, a 12 -element matroid, and a 14 -element matroid. The matroid R_{10} is the unique splitter for the class of regular matroids and for which

$$
\left[\begin{array}{l}
I_{5} \\
\end{array} \left\lvert\, \begin{array}{rrrrr}
-1 & 1 & 0 & 0 & 1 \\
1 & -1 & 1 & 0 & 0 \\
0 & 1 & -1 & 1 & 0 \\
0 & 0 & 1 & -1 & 1 \\
1 & 0 & 0 & 1 & -1
\end{array}\right.\right]
$$

is a representation of it over all fields. Precise descriptions of the $8-, 9-12-$, and 14 -element matroids are given below. For ease of reference, the notation is in keeping with the notation in [4],

8-Element Matroids. If $|E(M)|=8$, then M is one of twenty-one rank-4 paving matroids. Let $E(M)=\{1,2, \ldots, 8\}$. Up to isomorphism, to describe M, it is sufficient, to list the 4 -circuits of M. The first table consists of those matroids M having the property that, for every 4 -circuit C, there is another 4-circuit of M meeting C in exactly one element.

M	4-Circuits of M
$M_{8,1}$	$\begin{array}{lllll} \{1,2,3,4\}, & \{1,5,6,7\}, & \{1,2,5,8\}, \quad\{3,4,5,8\}, & \{2,3,6,7\}, \\ \{2,4,5,6\}, & \{1,4,7,8\}, & \{1,3,6,8\} \end{array}$
$M_{8,2}$	$\begin{array}{lllll} \{1,2,3,4\}, & \{1,5,6,7\}, & \{1,2,5,8\}, & \{3,4,5,8\}, & \{2,3,6,7\}, \\ \{2,4,5,6\}, & \{1,3,6,8\}, & \{4,6,7,8\} & & \\ \hline \end{array}$
$M_{8,3}$	$\begin{array}{lllll} \{1,2,3,4\}, & \{1,5,6,7\}, \quad\{1,2,5,8\}, \quad\{3,4,5,8\}, \quad\{2,3,6,7\}, \\ \{1,4,6,8\}, & \{2,4,7,8\} \end{array}$
$M_{8,3^{+}}$	$\begin{array}{lllll} \{1,2,3,4\}, & \{1,5,6,7\}, & \{1,2,5,8\}, \quad\{3,4,5,8\}, & \{2,3,6,7\}, \\ \{1,4,6,8\}, & \{2,4,7,8\}, & \{1,3,7,8\} \end{array}$
$M_{8,4}$	$\begin{aligned} & \{1,2,3,4\}, \quad\{1,5,6,7\}, \quad\{1,2,5,8\}, \quad\{3,4,5,8\}, \quad\{2,3,6,7\}, \\ & \{4,6,7,8\} \end{aligned}$
$M_{8,4+}$	$\begin{array}{lllll} \hline\{1,2,3,4\}, & \{1,5,6,7\}, \quad\{1,2,5,8\}, \quad\{3,4,5,8\}, & \{2,3,6,7\}, \\ \{4,6,7,8\}, & \{1,3,6,8\} \end{array}$
$M_{8,5}$	$\begin{array}{lllll} \{1,2,3,4\}, & \{1,5,6,7\}, & \{1,2,5,8\}, & \{2,3,6,8\}, & \{3,4,5,6\}, \\ \{1,4,7,8\}, & \{3,5,7,8\}, & \{2,4,6,8\} & & \\ \hline \end{array}$
$M_{8,6}$	$\begin{array}{llll} \{1,2,3,4\}, \quad\{1,5,6,7\}, \quad\{1,2,5,8\}, \quad\{2,3,6,7\}, \quad\{3,4,5,6\}, \\ \{2,4,7,8\}, \quad\{1,3,6,8\} \end{array}$

The second table consists of those matroids M having a 4 -circuit C such that every other 4 -circuit of M meets C in exactly two elements. Note that, in the table, F_{7}^{+}denotes the free coextension of F_{7}.

| M | 4 -Circuits of M | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F_{7}^{+} | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$ | $\{1,3,5,7\}$, | $\{1,3,6,8\}$, |
| | $\{1,4,5,8\}$, | $\{1,4,6,7\}$ | | | |
| $M_{8,7}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,3,6,8\}$, |
| | $\{1,4,5,8\}$, | $\{2,4,6,7\}$ | | | |
| $M_{8,7^{+}}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,3,6,8\}$, |
| | $\{1,4,5,8\}$, | $\{2,4,6,7\}$, | $\{3,4,6,7\}$ | | |
| $M_{8,8 a}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,3,6,8\}$, |
| | $\{2,4,5,8\}$, | $\{3,4,6,7\}$ | | | |
| $M_{8,8 b}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,3,6,8\}$, |
| | $\{2,4,5,8\}$, | $\{2,4,6,7\}$ | | | |
| $M_{8,9 a}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,5,8\}$, |
| | $\{2,3,6,8\}$, | $\{2,4,6,7\}$ | | | |
| $M_{8,9 b}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,5,8\}$, |
| | $\{2,3,6,8\}$, | $\{3,4,6,7\}$ | | | |
| $M_{8,9 b^{+}}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,5,8\}$, |
| | $\{2,3,6,8\}$, | $\{3,4,6,7\}$, | $\{2,4,5,7\}$ | | |
| $M_{8,10}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,6,8\}$, |
| | $\{3,4,5,8\}$, | $\{3,4,6,7\}$ | | | |
| $M_{8,10^{+}}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,6,8\}$, |
| | $\{3,4,5,8\}$, | $\{3,4,6,7\}$, | $\{2,3,6,8\}$ | | |
| $M_{8,10^{++}}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,6,8\}$, |
| | $\{3,4,5,8\}$, | $\{3,4,6,7\}$, | $\{2,3,6,8\}$, | $\{2,4,5,7\}$ | |
| $M_{8,11}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,2,7,8\}$, | $\{1,3,5,7\}$, | $\{1,4,6,8\}$, |
| | $\{3,4,5,8\}$, | $\{2,3,6,7\}$, | $\{2,4,5,7\}$ | | |
| $M_{8,12}$ | $\{1,2,3,4\}$, | $\{1,2,5,6\}$, | $\{1,3,5,7\}$, | $\{1,4,5,8\}$, | $\{2,3,7,8\}$, |
| | $\{2,4,6,7\}$, | $\{3,4,6,8\}$ | | | |
| | | | | | |

9-Element Matroids. If $|E(M)|=9$, then M is one of ten rank-4 paving matroids. Let $E(M)=\{1,2, \ldots, 9\}$. Again, to describe M, it suffices, up to isomorphism, to list the 4 -circuits of M. Here, if M is such a matroid,
then its set of 4 -circuits contains every 4 -element subset of each the sets $\{1,2,3,4,5\},\{4,5,7,8,9\}$, and $\{2,3,6,8,9\}$. The remaining 4-circuits of M are given in the next table.

M	Remaining 4-Circuits of M				
$M_{9,1}$	$\{1,2,6,7\}$,	$\{1,3,7,8\}$,	$\{1,4,6,9\}$,	$\{1,5,6,8\}$	
$M_{9,1 a}$	$\{1,2,6,7\}$,	$\{1,3,7,8\}$,	$\{1,4,6,9\}$,	$\{1,5,6,8\}$,	$\{3,4,6,7\}$
$M_{9,1 b}$	$\{1,2,6,7\}$,	$\{1,3,7,8\}$,	$\{1,4,6,9\}$,	$\{1,5,6,8\}$,	$\{3,5,6,7\}$
$M_{9,2}$	$\{1,2,6,7\}$,	$\{1,3,7,8\}$,	$\{1,4,6,9\}$	$\{3,5,6,7\}$	
$M_{9,3}$	$\{1,4,6,8\}$,	$\{1,2,7,8\}$,	$\{1,5,6,9\}$,	$\{1,3,7,9\}$,	$\{2,4,6,7\}$
$M_{9,3^{+}}$	$\{1,4,6,8\}$,	$\{1,2,7,8\}$,	$\{1,5,6,9\}$,	$\{1,3,7,9\}$,	$\{2,4,6,7\}$,
	$\{3,5,6,7\}$				
$M_{9,4}$	$\{1,4,6,8\}$,	$\{1,2,7,8\}$,	$\{1,5,6,9\}$,	$\{1,3,7,9\}$,	$\{2,5,6,7\}$
$M_{9,4^{+}}$	$\{1,4,6,8\}$,	$\{1,2,7,8\}$,	$\{1,5,6,9\}$,	$\{1,3,7,9\}$,	$\{2,5,6,7\}$,
	$\{3,4,6,7\}$				
$M_{9,5}$	$\{1,4,6,8\}$,	$\{1,2,7,8\}$,	$\{1,5,6,9\}$,	$\{3,4,6,7\}$	
$M_{9,6}$	$\{1,4,6,8\}$,	$\{1,2,7,9\}$,	$\{3,5,6,7\}$		

12- and 14-Element Matroids. The unique 4-connected 12-element matroid satisfying (P2) and the unique 4-connected 14-element matroid satisfying (P2) have $G F(4)$-representations
and

$$
\left[\begin{array}{c|cccccccc}
& I_{6} & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & \alpha & \alpha \\
0 & 0 & 1 & 0 & 0 & 1 & \alpha^{2} & \alpha^{2} \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 0 & 0
\end{array}\right]
$$

respectively, where $\alpha^{2}+\alpha+1=0$.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana, USA

E-mail address: oxley@math.lsu.edu

Department of Mathematics, Angelo State University, San Angelo, Texas, USA

E-mail address: spfeil@angelo.edu

School of Mathematics and Statistics, University of Canterbury, Christchurch, New Zealand

E-mail address: charles.semple@canterbury.ac.nz

School of Mathematics, Statistics and Operations Research, Victoria University of Wellington, Wellington, New Zealand

E-mail address: geoff.whittle@mcs.vuw.ac.nz

[^0]: Date: November 27, 2018.
 1991 Mathematics Subject Classification. 05B35.
 Key words and phrases. Wheels-and-Whirls Theorem, 4-circuits, 3-cocircuits, 4cocircuits.

 The third and fourth authors were supported by the New Zealand Marsden Fund.

