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ABSTRACT. Tutte proved that a non-empty 3-connected matroid with
every element in a 3-element circuit and a 3-element cocircuit is either
a whirl or the cycle matroid of a wheel. This result led to the Split-
ter Theorem. More recently, Miller proved that a matroid of sufficient
size with every pair of elements in a 4-element circuit and a 4-element
cocircuit is a tipless spike. Here we investigate matroids having similar
restrictions on their small circuits and cocircuits. In particular, we com-
pletely determine the 3-connected matroids with every pair of elements
in a 4-element circuit and every element in a 3-element cocircuit, as well
as the 4-connected matroids with every pair of elements in a 4-element
circuit and every element in a 4-element cocircuit.

1. INTRODUCTION

The study of matroids with many small circuits and cocircuits begins
with Tutte’s well-known Wheels-and-Whirls Theorem [6]. This theorem was
originally stated in terms of essential elements of a 3-connected matroid M,
that is, elements e of M with the property that neither M\e nor M/e is 3-
connected. We present it here in terms of 3-circuits and 3-cocircuits, where,
as in the rest of the paper, a k-element circuit and a k’-element cocircuit is
denoted as a k-circuit and k’-cocircuit, respectively.

Theorem 1.1. Let M be a non-empty 3-connected matroid. Then every
element of M is in a 3-circuit and a 3-cocircuit if and only if M has rank
at least three and is isomorphic to a wheel or a whirl.

Theorem 1.1 and its well-known extension, Seymour’s Splitter Theo-
rem [5], has been instrumental in the analysis of 3-connected matroids. More
recently, Miller [2] proved the following result which has conditions similar
to those in Tutte’s theorem. For all » > 3, a rank-r tipless spike is a matroid
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M with ground set F = {x1,y1,%2,¥2,...,%r, Yp} Whose circuits consist of
the following sets:

(i) all sets of the form {x;,ys,x;,y;} with 1 <i<j <,
(ii) a subset of {{z1,22,...,2r} : 2 € {x;,y;} for all i} such that no two
members of this subset have more than r — 2 common elements, and
(iii) all (r+ 1)-element subsets of E that contain none of the sets in (i) and
(ii).
Theorem 1.2. Let M be a matroid with |E(M)| > 13. Then every pair of
elements of M is in a 4-circuit and a 4-cocircuit if and only if M is a tipless
spike.

In this paper, we continue along a similar line of inquiry. A matroid M has
property (P1) if every pair of elements is in a 4-circuit and every element is
in a 3-cocircuit. Furthermore, a matroid M has property (P2) if every pair of
elements is in a 4-circuit and every element is in a 4-cocircuit. The next two
theorems are the main results of this paper. We denote the rank-3 whirl, the
Fano matroid, and the non-Fano matroid by W3, Fy, and F, respectively.
Also, up to isomorphism, we denote the rank-3 simple matroid with ground
set {1,2,...,7} and whose 3-circuits are {1, 2,3}, {1,4,5}, {1,6,7}, {2,4,6},
and {3,5,7} by Pr.

Theorem 1.3. Let M be a non-empty 3-connected matroid. Then M has
property (P1) if and only if

(i) |[E(M)| <8 and M is isomorphic to one of the matroids Us 5, M(Ky),
W3, Fr, (F7)*, and Ps, or
(ii) |[E(M)| > 9 and M is isomorphic to M(Ks ) for some n > 3.

Theorem 1.4. Let M be a non-empty 4-connected matroid. Then M has
property (P2) if and only if

(i) |[E(M)| < 15 and M is isomorphic to one of the thirty-five matroids
listed in the appendix, or
(ii) |[E(M)| > 16 and M is isomorphic to M(Kyy) for some n > 4.

It is clear that M (K3 ), where n > 3, and M (K4 ), where n > 4, satisfy
(P1) and (P2), respectively. For |[E(M)| > 9 and |E(M)| > 16, the necessary
directions of the proofs of Theorems 1.3 and 1.4 are given in Sections 2
and 3, respectively. The connectivity conditions in Theorems 1.3 and 1.4
prevent an i-element subset of E(M) from being both an i-circuit and an
i-cocircuit, for ¢ = 3 and i = 4, respectively. For the proof of Theorem 1.3
when |E(M)| < 8 and the proof of Theorem 1.4 when |E(M)| < 15, we refer
the interested reader to Pfeil’s PhD thesis [4]. We end the introduction with
some preliminaries.
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Throughout the paper, notation and terminology follows Oxley [3]. Let
M be a matroid. Two subsets X and Y of E(M) meetif XNY is non-empty.
Referred to as orthogonality, it is well known that if C' is a circuit and D is
a cocircuit of M, then |C' N D| # 1.

Lastly, let M; and M5 be two matroids with ground sets E; and F», re-
spectively, and let ¢ : E1 — E5 be a bijection. Then ¢ is a weak map from
M; to M if, for every independent set I in Ms, we have ¢~ 1(I) is indepen-
dent in My, in which case, M> is a weak-map image of My. Equivalently, it
is easily checked that, ¢ is a weak map from M; to My if, for every circuit C
of M, we have ¢(C) contains a circuit in M. As in this paper, it is typical
to assume that E; and Fsy are the same sets and ¢ is the identity map. The
following theorem is due to Lucas [1].

Theorem 1.5. Let My be the weak-map image of a binary matroid M,
and suppose that r(Msy) = r(My). Then My is binary. Moreover, if My is
connected, then My = M.

2. MATROIDS WITH PROPERTY (P1) AND AT LEAST 9 ELEMENTS

Throughout this section, M is a 3-connected matroid satisfying (P1) and
with ground set F(M) = {x1,z9,...,2¢}, where t > 4. Our ability to
determine M, for when |E(M)| > 9, explicitly relies on showing that E(M)
can be partitioned into blocks in which each block is a 3-cocircuit and M
restricted to any two of these blocks is isomorphic to M(Ks33). We first
prove that if M has two distinct 3-cocircuits that meet in two elements,
then M is isomorphic to Us 5.

Lemma 2.1. Let Dy and D3 be two 3-cocircuits of M such that |D1N D] =
2. Then M = Uz .

Proof. Without loss of generality, let D; = {z1,29,2z3} and Dy =
{x1,22,24}. Then M*|(D1 U D3) = Us4 since M is 3-connected. This
implies that if |[E(M)| = 4, then M has no 4-circuits; a contradiction, so
|E(M)| > 5. Furthermore, by orthogonality, any circuit meeting D; U Do
does so in at least three elements. By (P1), M has a 4-circuit Cy con-
taining {z1,x5}, and there is a unique element z; in {z2,xs3,x4} that is
not in C;. Then, similarly, M has a 4-circuit Cy containing {z;, z5}. Now
CLuCy = {$1,$2,x3,x4,$5} and T(Cl U 02) = 3. Also ’I”*(Cl U 02) < 3.
Therefore

T(ClUCQ)+T*(01UCQ)—’ClUCQ‘§3+3—5:1,

and so |E(M)| < 6 as M is 3-connected. Using the fact that M satisfies
(P1), a routine check shows that |E(M)| <5, and so M = Us 5. O
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The next three lemmas concern disjoint 3-cocircuits. The first shows that
M restricted to two such 3-cocircuits is isomorphic to M (Kj3), while the
second and third accumulate in showing that if |[E(M)| > 9, then M has
three pairwise-disjoint 3-cocircuits.

Lemma 2.2. Let Dy and Dy be two disjoint 3-cocircuits of M. Then
M‘(Dl U DQ) = M(K&g).

Proof. Without loss of generality, let D; = {x1,x9,23} and Dy =
{z4,x5,26}. By (P1), M has a 4-circuit C; containing {z1,z4}. By orthog-
onality, we may assume C7 = {x1,x9, x4, x5}. Similarly, M has a 4-circuit
C containing {z3, z¢}. By symmetry, we may assume Co = {x1, x3, x4, T¢}.
Lastly, M has a 4-circuit C3 containing {xs,x¢}. We next show that Cj
does not meet either C'y or C5 in three elements.

Say |C1 N Cs] = 3. Then C5 C (D U Dy) — x3. As M is 3-connected,
M|(Cy U C3) = Usp, and so there exists a 4-circuit in M meeting D; in
exactly one element; a contradiction. Thus |Cy N Cs| # 3 and, similarly,
|Ca N Cs| # 3.

By orthogonality with D; and Ds, it now follows that neither z; nor
x4 is in C5, and so C3 = {x9,x3,25,26}. We now apply Theorem 1.5 to
complete the proof. Since M|(D; U Dy) = M|(C; U Cy U C3), we have
r(M|(D1 U Ds3)) = 4. Next, consider K3 3, and label its edges so that

{{1’1, T, l‘g}, {1'4, 5, 1‘6}}

is a partition of E(K33), where each block is a bond of Kj3, and
{331, T, T4, $5}, {xl, I3,T4, :EG}, and {.752, r3,Ts5, xg} are the 4—cycles of K273.
Then the identity map from E(M (K> 3)) to E(M|(D1UD>)) is a weak map
from M(Ksy3) to M|(Dy U Dg). Moreover, as M|(D; U D) is connected,
Theorem 1.5 implies that M|(D; U Dy) = M(Ks3). O

Lemma 2.3. If |E(M)| > 9, then M has two disjoint 3-cocircuits.

Proof. Suppose |E(M)| > 9 and M has no pair of disjoint 3-cocircuits. Let
Dy and Dj be distinct 3-cocircuits of M. Then, by Lemma 2.1, |[D1NDs| =1
and so, without loss of generality, we may assume D; = {1, x93, 23} and
Dy = {x1,x4,25}. We first show that M has an element contained in three
3-cocircuits.

Assume M has no such element. By (P1), M has a 3-cocircuit D3 con-
taining zg. By assumption, D3 meets each of D and Ds and so, without
loss of generality, D3 = {2, x4, z¢}. But M also has a 3-cocircuit containing
x7, and such a cocircuit cannot meet each of D1, Do, and D3 without using
an element shared by two of them. Thus M has an element contained in
three 3-cocircuits.
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By Lemma 2.1, we may now assume that M has a 3-cocircuit D3 =
{x1,z¢,z7}. Consider a 3-cocircuit Dy of M containing zg. Since Dy meets
each of Dy, Dy, and D3, we have z; € D4 and so, by Lemma 2.1, we may
assume Dy = {x1,xg, v9}. However, by (P1), M has a 4-circuit C containing
{z1,z2}. By orthogonality, each of |C' N Da|, |C N D3|, and |C' N Dy| is at
least 2 which is impossible as |C| = 4. This contradiction establishes the
lemma. O

Lemma 2.4. If|E(M)| > 9, then M has three pairwise-disjoint 3-cocircuits.

Proof. Suppose |E(M)| > 9. By Lemma 2.3, M has disjoint 3-cocircuits,
Dy = {z1,x9,23} and Dy = {z4,x5,26} say. By Lemma 2.2, we have
M|(Dy U Dy) = M(Ksy3). Therefore, without loss of generality, we may
assume that M has circuits C1 = {z1,x2, 24,25}, C2 = {x1, 23,24, 76},
and C3 = {x2,23,25,26}. By (P1), M has a 3-cocircuit D3 containing
x7. If M does not contain three pairwise-disjoint 3-cocircuits, then Dg
meets D1 U Dy and, by orthogonality, it must do so in one of the pairs
{x1, 24}, {x2, x5}, {x3,26}. Therefore, by symmetry, we may assume D3 =
{x1, x4, 27}. Similarly, if Dy is a 3-cocircuit of M containing xg, then, by
Lemma 2.1, we may assume Dy = {x3,x5,28}. Finally, applying the same
argument again, if D5 is a 3-cocircuit of M containing xg, we have D5 =
{x3, ¢, 9}. But then D3, Dy, and D5 are disjoint, thereby completing the
proof of the lemma. O

We next show that E(M) can be partitioned into 3-cocircuits provided
[B(M)] > 9.

Lemma 2.5. If |[E(M)| > 9, then E(M) can be partitioned into 3-element
blocks, where each block is a 3-cocircuit.

Proof. Suppose |E(M)| > 9, and let S = {Dy, Ds,...,D,} be the largest
collection of pairwise-disjoint 3-cocircuits of M. By Lemma 2.4, we have n >
3. Suppose there is an element x in M not in any of the sets Dy, Ds, ..., D,.
By (P1), M has a 3-cocircuit D containing . Now D has a non-empty
intersection with a 3-cocircuit in S; otherwise, S is not of maximum size.
Without loss of generality, DN D; # () and so, by Lemma 2.1, |DND;| = 1.
By Lemma 2.2, M|(D; U D;) = M(Ks3) for all i € {2,3,...,n}. Thus, by
orthogonality, D meets each of Do, D3, ..., D,. But then |D| > 4 as n > 3;
a contradiction. Thus, the lemma is proved. O

We are now ready to prove the necessary direction of Theorem 1.3 when
|E(M)| > 9.

Proof of Theorem 1.3 for |E(M)| > 9. Suppose |E(M)| > 9. Then, by
Lemma 2.5, there is a partition of E(M) into 3-cocircuits Dy, Do, ..., D,
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where D; = {z;,y;, zi} for all i. By Lemma 2.2, M|(D;UD;) = M(K,3) for
alli € {2,3,...,n}, so we may assume that M has 4-circuits {1, z;, y1,v;},
{z1, i, 21,2}, and {y1,¥;, 21,2;} for all such i. Consider the circuits
{1, 25, y1,v:i} and {x1,25,y1,y;}, where ¢ and j are distinct. By circuit
elimination and orthogonality, {x;,ys:, z;,y;} is a 4-circuit of M. Similarly,
for all distinct 4,7 € {2,3,...,n}, we have {z;,z;,x;, 2;} and {v;, 2, y;, 25}
are 4-circuits of M.

We next show that each set of the form

{xia yivyj7 Zja Zkhxk}a

where i, j, and k are distinct elements in {1,2,...,n}, is a 6-circuit of M
Using circuit elimination on {x;, y;, z;,y; } and {z;, 2;, Tk, 2 }, it follows that
{Zi,Yi,yj, Tk, 2j, 21} contains a circuit of M. By orthogonality and as each
of M|(D; UD;j), M|(D; UDy), and M|(D; U Dy,) is isomorphic to M (Ks3),
it is easily checked that {x;, ys, y;, zk, 25, 2 } is itself a 6-circuit of M.

Now consider K3 ,, where n > 3. Label the edge set of K3, so that

{{1’1, Y1, 21}, {562, y2.22}, Sy {l’m Yn,s Zn}}

is a partition of E(K3,), where each block is a bond of K3,, and
{xs, yi, 25, y5}, {24, 20,25, 25}, and {y;, 2, Y4, 2;} are 4-cycles of K3, for all
distinct 7,7 € {1,2,...,n}. Then the identity map ¢ from E(M(Ks3,))
to E(M) is a weak map from M (K3,) to M since, for each circuit C' of
M (K3.,,), we have ¢(C) is a circuit of M by above.

We next prove that r(M) = r(M(Ks,)). To do this, we show, by in-
duction, that for all 3-connected matroids M’ satisfying (P1) and whose
ground set can be partitioned into m 3-cocircuits, where m > 3, we have
r(M') = r(M(Ks,)). If n = 3, then, by Lemma 2.2 and the 4-circuits es-
tablished above, r(M) = r(M(K33)). Therefore suppose n > 4 and that,
for all matroids M’ as described above, with 3 < m < n — 1, we have
r(M') = r(Ks,m). Let M~ denote the matroid M|(Dy U Dy U---U D,,_1).
We first show that M~ satisfies (P1). Evidently, every element of M~ is
in a 3-cocircuit. Let x and y be distinct elements of M ~. If x and y are
in distinct 3-cocircuits D; and D; of M ™, then, by orthogonality and M
satisfying (P1), M~ has a 4-circuit containing {z,y}. Say = and y are in the
same 3-cocircuit, D; say, of M ~. By considering D; with either D; if ¢ # 1
or Dy if i = 1, it follows by Lemma 2.2 that M~ has a 4-circuit containing
{z,y}. Lastly, it remains to show that M~ is 3-connected. If M~ is not
3-connected, then it has a 2-separation (A, B). Since n — 1 > 3, it follows
that, for some i € {1,2,...,n — 1}, there is a 3-cocircuit D; such that for
one of A and B, say A, we have D; C A, or |D; N A| = 2 and |B| > 3.
Thus, we may assume that D; € A. But then, by the 4-circuits above,
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r(AU D,) = r(A) + 1. Therefore
r(AUDy)+r(B)—r(M)=r(A)+1+r(B)—(r(M")+1)
=r(A) +r(B) —r(M"7),

and so (AU Dy, B) is a 2-separation in M; a contradiction. Thus M~ is
3-connected. By induction,

T(M7> = T'(M‘(Dl UDyU---U Dn—l) = T’(M(Kgm_l)),
and so, as D,, is a cocircuit of M,

T(M) = T(M|(D1 UDyU---U Dn—l) +1= T(M(Kg,n))

Finally, M is connected and so, by Theorem 1.5, M = M(K3,). This
completes the proof of Theorem 1.3. O

3. MATROIDS WITH PROPERTY (P2) AND AT LEAST 16 ELEMENTS

Throughout this section, M is a 4-connected matroid satisfying (P2).
Unless stated otherwise, M has ground set E(M) = {x1,x9,...,2:}, where
t > 4. The approach is similar to that of the last section. In particular, most
of the work is in establishing that if |[E(M)| > 16, then there is partition of
E(M) into blocks in which each block is a 4-cocircuit. However, because of
the freedom of 4-cocircuits in comparison to 3-cocircuits, the case analysis
is much more involved. We begin with a lemma analogous to Lemma 2.1.

Lemma 3.1. Let Dy and Dy be 4-cocircuits of M such that |D1 N Day| = 3.
Then M = U376.

Proof. Without loss of generality, let D; = {x1,z2,23,24} and Dy =
{z1, 22,23, 25}. Then M*|(D1UD3) = Us 5 as M is 4-connected. Therefore,
if |[E(M)| = 5, then M has no 4-circuits; a contradiction, so |E(M)| > 6.
Furthermore, by orthogonality, any circuit meeting Dy U Dy does so in at
least three elements.

By (P2), M has a 4-circuit C; containing {x1,z¢}. Similarly, M has a
4-circuit Co containing {x;, xg}, where x; € (D1 UDs)—C;. Since C1 —xg C
D1 U Dy and Cy — zg € D1 U Do, it follows by circuit elimination that M
has a circuit C3 C Dy U Ds. Since M is 4-connected and |E(M)| > 6, we
have |C3| € {4,5}. Now

r(Cs) +r*(Cs) — |Cs] = 2,

so, as M is 4-connected, |E(M)| < 7. As M satisfies (P2), a routine check
shows that |E(M)| < 6, and so M = Usg. O
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We next establish an analogue of Lemma 2.2. In particular, Lemma 3.5
states that if M has two disjoint 4-cocircuits, then M restricted to these 4-
cocircuits is isomorphic to M (K3 4). This lemma requires three preliminary
results. In each of these preliminary results as well as Lemma 3.5, we suppose
that X = {1, 22, 23,24} and Y = {y1, y2, y3,y4} are disjoint 4-cocircuits of
M. Observe that orthogonality and the 4-connectedness of M imply that
every 4-circuit contained in X UY meets each of X and Y in exactly two
elements.

Lemma 3.2. Let C7 and Cs be distinct 4-circuits of M contained in X UY
such that |[CrNCoNX| > 1. Then |CiNCyNX| =1.

Proof. Since each 4-circuit contained in X UY meets each of X and Y in
exactly two elements, it suffices to show that |C1NC2NX| # 2. Suppose |C1N
CyNX| =2. Then |C; NCy| € {2,3}. If |C1 N Cy| = 3, then we may assume
that C; = {x1,z2,y1,y2}, and Co = {x1,22,¥y1,y3}. By circuit elimination,
M has a circuit contained in {z1,y1,y2,ys}, but such a circuit contradicts
either the 4-connectivity of M or orthogonality. If |C7 N Cy| = 2, then we
may assume that C; = {x1,22,y1,y2}, and Co = {x1,x9,¥y3,ys}. By circuit
elimination, M has a circuit contained in {x1,y1,y2,y3, y4}. But again, such
a circuit contradicts either the 4-connectivity of M or orthogonality. Thus
|Cy N Cy N X| # 2, thereby completing the proof of the lemma. O

Lemma 3.3. Let (', Cs, and C5 be distinct 4-circuits of M such that
CituCUC3CXUY and X CC1UCUCs. ThenY C C1 UCyU (.

Proof. Suppose Y — (C; U Cy U C3) is non-empty. Then, by Lemma 3.2, we
may assume that C1NY = {y2,y3}, CoNY = {y1,y3}, and C3NY = {y1,y2}.
Furthermore, by Lemma 3.2, we may also assume that C; N X = {z1, 22}
and Cy N X = {x1,x3}, in which case, {z1,y1,y2,y3} spans X. Now X is
independent as M is 4-connected, and so {y1,y2,y3} C cl(X). But then M
has a circuit that contains y; and is contained in X Uy;. This contradiction
to orthogonality completes the proof of the lemma. ([

Lemma 3.4. Let Cy and Cy be distinct 4-circuits of M in X UY such that
|C1 ng’ > 1. Then |Cl N Cg‘ = 2.

Proof. Assume |C; N Ca| # 2. Since
[CiNCyl=|C1NCoNX|+|C1NCyNY],

it follows by Lemma 3.2 and symmetry that we may assume |C1NCyNX| =1
and |C1NC2NY | = 0. Without loss of generality, let Cy = {z1, 22, y1, y2} and
Cy = {z1,73,y3,y4}. By Lemma 3.3, any additional 4-circuit of M contained
in X UY includes z4. By (P2), M has a 4-circuit C3 containing {x2,ys}.
By orthogonality and Lemma 3.2, we may assume C3 = {x2,%4,y1,Yy3}-
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Similarly, M has a 4-circuit Cy containing {x2,y4}. But then x4 € Cy and
|C3 N Cy N X| =2, contradicting Lemma 3.2. The lemma now follows. [

Lemma 3.5. The restriction M|(X UY) = M(Ky4).

Proof. By (P2), M has a 4-circuit C; containing x; and y;. By orthogonality,
we may assume C1 = {x1,2,y1,y2}. Furthermore, M has a 4-circuit Co
containing x; and y3. By orthogonality and Lemmas 3.2 and 3.4, we may
assume Cy = {1, x3,y1,ys}. Similarly, M has a 4-circuit C containing x;
and y4 and, by Lemmas 3.2 and 3.4, C3 = {z1, 24, y1,V4}

Continuing this process, M has a 4-circuit Cy containing z2 and y3. Since
x9 € C1 N Cy, we have x1 € Cy by Lemma 3.2. Therefore, as y3 € Co N CYy,
Lemma 3.4 implies that x3 € Cy. Since x2 € C1 N Cy and z3,y3 € Co N
Cy, it follows by Lemma 3.4 that yo € Cy. Hence Cy = {x2,23,92,y3}.
Similarly, M has a unique 4-circuit containing xo and y4 and it is C5 =
{z2,24,Yy2,y4}, and M has a unique 4-circuit containing xs and y4 and it is

CG = {:C37 x4,Y3, y4}

We now show that C(M|(X UY)) = {C1,Cs,...,Cs}. First observe
that, since every 2-element subset of each of X and Y is in one of
Cy,Cy,...,Cs, Lemma 3.2 implies that M|(X UY) has no other 4-circuits.
Clearly, 7(X UY) = 5. Suppose there is a circuit C € C(M[(X UY)) —
{C4,Cq,...,Cg}. If |C| = 6, then C contains C; for some i € {1,2,...,6};

a contradiction. Therefore, |C| = 5. To maintain orthogonality, either
ICNX| =2o0r |[CNY| = 2 Thus to avoid containing one of the
six 4-circuits, we may assume that C = {z1,22,y2,y3,y4}. But then,

Cl({x17y27y3ay4}) = {x17$27$3,$4yylay27937y4}7 S0 T(X U Y) = 47 a con-
tradiction. Thus C(M|(XUY)) = {C1,Ca,...,Cs}. It is now easily checked

that M|(X UY) 2 M(Kyy). O

The next main step in the proof of Theorem 1.4 is to show that if
|E(M)| > 11, then M has two disjoint 4-cocircuits. Stated as Lemma 3.15,
its proof is long and consists of a sequence of preliminary lemmas. Except
for the first, these preliminary lemmas concern the way 4-cocircuits intersect
if M has no two disjoint 4-cocircuits.

Lemma 3.6. Let Dy, Do, and D3 be 4-cocircuits of M such that |[D1 N
Dy N Ds| =1 and |D; N Dj| = 1 for all distinct i,j € {1,2,3}. Then
E(M) = Dy U Dy U Ds, that is, |E(M)| = 10.

Proof. Suppose that E(M) — (D1 U D2 U Ds) # 0. Let y € E(M) — (D1 U
DyU D3) and D1 N DaN D3 = {x}. By (P2), M has a 4-circuit C' containing
{z,y} and, by orthogonality, |C' N D;| > 2 for all <. But then |C| > 5; a
contradiction. g
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The next two lemmas show that if |EF(M)| > 11 and M has no two
disjoint 4-cocircuits, then M has two 4-cocircuits meeting in exactly two
elements and that every other 4-cocircuit of M meets the union of two
such 4-cocircuits in at least two elements. These two lemmas underlie the
approach taken to establish Lemma 3.15.

Lemma 3.7. Let |[E(M)| > 11, and suppose that M has no two disjoint
4-cocircuits. Then M has 4-cocircuits Dy and Da such that |D1 N Da| = 2.

Proof. Suppose the lemma does not hold. By (P2), M has a 4-cocircuit
D; containing x;. Without loss of generality, we may assume D; =
{x1,x9,x3,24}. Also, M has a 4-cocircuit D9 that contains x5 and, as M
has no two disjoint 4-cocircuits, meets D;. By Lemma 3.1, |D; N Dy| = 1,
and so we may assume Dy = {1, x5, ¢, z7}. Similarly, M has a 4-cocircuit
D3 that contains xg and |D; N D3| = |Da N D3| = 1. As |[E(M)| > 11, it
follows by Lemma 3.6 that x1 ¢ Ds. Therefore, without loss of generality,
D3 = {x9, x5, 28, x9}. Lastly, M has a 4-cocircuit D4 containing x1y and

|D1 N Dy| = |Dy N Dy| = | D3N Dy| = 1.

By Lemma 3.6, we may assume Dj = {x3,xg, g, x10}. But then, a similar
argument implies that M has the 4-cocircuit Dy = {x4, x7, 9, 11}, in which
case D4 and Ds are disjoint; a contradiction. O

Lemma 3.8. Let |[E(M)| > 10, and suppose that M has no two disjoint 4-
cocircuits. Let Dy, Do, and D3 be 4-cocircuits of M such that |DyNDsy| = 2.
Then ’Dg N (Dl @] _DQ)’ > 2.

Proof. If the lemma does not hold, then |D3 N (D; U D2)| = 1. More
specifically, as M has no two disjoint 4-cocircuits, |D; N Dy N D3| = 1.
Let {z} = D; N Dy N D3. By circuit elimination, M has a cocircuit
Dy C (D1 U Dg) —{z}. Since D3N Dy = 0, it follows that |Dy| # 4.
Therefore, as M is 4-connected, Dy = (D1 U Dy) — {x}.

Since |E(M)| > 10, we have |E(M) — (D1 U Do U D3)| > 1. Let y €
E(M) — (D1 U Dy U Ds), and let C' be a 4-circuit containing {x,y}. To
preserve orthogonality, C' contains an element in D3 — {z} and the unique
element in (D; N Dy) — {z}. But then |C' N Dy| = 1. This contradiction to
orthogonality proves the lemma. O

Lemma 3.9. Let |[E(M)| > 9, and suppose that M has no two disjoint
4-cocircuits. Let Dy, Do, and Ds be distinct 4-cocircuits of M such that
|D1 N D2| =2. Then D1 N Dy € Ds.

Proof. Without loss of generality, let D; = {z1,22,23,24} and Dy =
{x1, 9, x5,26}. Suppose that {z1,z2} C D3. By Lemma 3.1, we may as-
sume that D3 = {z1,2z2,2z7,28}. Using circuit elimination on each pair
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of cocircuits in {Dj, Dy, D3} and eliminating x2, we find that each of
{x1, 3,24, 75,26}, {21, %3, 24, 27,28}, and {1, z5, z6, 27, T8} contains a co-
circuit. Noting that M has no cocircuits of size at most three, each such
cocircuit must contain x1; otherwise, M has two disjoint 4-cocircuits. More-
over, for each of these 5-element sets, every 4-element subset containing x;
meets Dy, Da, or D3 in exactly three elements. Thus, by Lemma 3.1, none
of these subsets is a 4-cocircuit. Hence each of these 5-element sets is a
cocircuit, which we refer to as D5, Dg, and D7, respectively.

By (P2), M has a 4-circuit Cy containing {z1,z9}. By considering the
intersection of C'y with each of Dy, Dy, and D3, we see that xo € C;. But
then, regardless of the choice for the remaining element in Cp, it follows
that C] meets one of Ds5, Dg, and D7 in exactly one element, contradicting
orthogonality. This contradiction proves the lemma. [l

Lemma 3.10. Let |[E(M)| > 11, and suppose that M has no two disjoint
4-cocircuits. Let Dy, Do, and D3 be 4-cocircuits of M such that | D1 N Dy N
D3| =1. Then |D; N Dj;| =1 for some distinct elements i,j € {1,2,3}.

Proof. Suppose the lemma does not hold. Then, by Lemmas 3.1 and 3.9,
we may assume, without loss of generality, that Dy = {x1,x9, 23,24},
Dy = {x1,29,25,26}, and D3 = {x1,x3,25,27}. Let C1 be a 4-circuit of
M containing {xg,z9}. If C; meets Dy U Dy U D3, then, by orthogonality,
it does so in at least three elements. Therefore C; N (Dy U Dy U D3) = 0, so
|[E(M)| > 11 and we may assume Cy = {xg, x9, Z10, T11}-

Now let D4 be a 4-cocircuit of M containing xg. By orthogonality, we
may assume xg9 € Dy. Since M has no two disjoint 4-cocircuits, D, meets
each of Dy, Do, and D3. Furthermore, by Lemma 3.8, D4 contains at least
two elements from each of D1 U Dy, D1 U D3, and Dy U Ds3. If 1 € Dy, then,
by Lemma 3.9, none of z9, x3, and z5 are in Dy. It follows that z1 & Dy.
Therefore, without loss of generality, Dy = {z2, z3,zs,T9}.

Finally, let Cy be a 4-circuit of M containing {z4,z10}. By orthogonal-
ity, |Co N Dy| > 2. If 21 € Cy, then, without loss of generality, we may
assume that x9 € Cy. But then Cy N Dy # 0 and Co N Dy # 0, and it
follows by orthogonality that |Cy N Do| > 2 and |Co N Dy| > 2, which is
not possible. Thus z; € Cs. Therefore Co N Dy # () and Co N D3 # (), and
so Cy = {z1, 24, 25,210} Similarly, M has a unique 4-circuit C3 containing
{z4, 211} and it is C3 = {z1, x4, 5,211 }. As M is 4-connected, M |(Co UC3)
is isomorphic to Uss. In turn, this implies that M has a circuit, namely,
{z4, 5,710,711} meeting D; in exactly one element. This contradiction
completes the proof of the lemma. O



12 JAMES OXLEY, SIMON PFEIL, CHARLES SEMPLE, AND GEOFF WHITTLE

For the rest of the lemmas leading to the proof that M has two disjoint
4-cocircuits if |E(M)| > 11, we frequently refer to the way in which a 4-
cocircuit intersects two other 4-cocircuits which share two elements. For
ease of reading, we introduce the following terminology.

Let D1, D2, and D3 be 4-cocircuits of M such that |D; N Dy| = 2. With
respect to (D1, D2), we say that Ds is

(1) Type-1 if |D3 N (Dl N D2)| =1, and |D3 N (Dl — D2)| =1, and ‘D3 N
(D2 — D1)| =0,
(ii) Type-2 if |D3 M (Dl N D2)| =0, and ‘Dg N D1| = ‘Dg N D2| =1, and
(iii) Type-3 if ‘Dg N (Dl N D2)| =0, and ‘Dg N Dl‘ = 2, and |D3 ﬂD2| =1.

Set diagrams of the three types are shown in Fig. 1.

_______

Dy

_______

~~

0
o)
B
oo
g
(o)

(A) (D1, Dy)-Type-1 {Dh Ds}- Type—

————

(¢) (D1, D2)-Type-3

FiGURE 1. Set diagrams of Types-1, -2, and -3 intersections.

Note that Type-2 intersections are symmetric, and therefore we will de-
note this intersection by { D1, Dy }-Type-2. There will be occasions in which
it is sufficient to specify that Ds is either (D1, Dy)-Type-i or (Dg, D1)-Type-i
for a fixed i € {1,3}. In these instances, we will say that Ds is {D1, Da}-
Type-i. The previous lemmas ensure that any 4-cocircuit not contained in
DU Dy intersects D1 U D> in one of the above types if M has no two disjoint
4-cocircuits and |E(M)| > 11. We prove this in the following lemma.

Lemma 3.11. Let |E(M)| > 11, and suppose that M has no two disjoint
4-cocircuits. Let Dy and Dy be 4-cocircuits of M such that |DyNDy| = 2. If
Ds is a 4-cocircuit of M such that Ds € DyUDsy, then D3 is { D1, D2 }-Type-i
for some i € {1,2,3}.
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Proof. Let D3 be a 4-cocircuit of M not contained in D1UD,. By Lemma 3.9,
|DsN(D1NDy)| € {0,1}. Suppose that |[D3N(D1ND2)| = 1. By Lemma 3.8,
|Ds N (D1 U Dg)| > 2, so we may assume |D3 N (D; — Dy)| = 1. Since
|D1N D3| = 2 and |D1ND3| = 2, it follows by Lemma 3.10 that |[DaN D3| = 1.
Therefore | D3 N (D2 — Dy)| =0, and D3 is (Dy, D2)-Type-1.

Now suppose that |D3 N (Dy N Dy)] = 0. As M has no two disjoint 4-
cocircuits, we have Dy N D3 # () and Dy N D3 # (. Therefore, without
loss of generality, as D3 € Dy U Da, either |Dy N D3| = |Dy N D3| =1, or
|D1 N D3| =2 and |Dy N D3| = 1. In particular, D3 is {D;, D2 }-Type-2 or
(D1, D2)-Type-3, respectively. O

For when |E(M)| > 11, the next three lemmas show that if M has no two
disjoint 4-cocircuits, and D, Dy, and D3 are 4-cocircuits of M such that
|D1 N Da| =2 and D3 € Dy U Da, then Dj is neither {D;, Dy }-Type-2 nor
{D1, D}-Type-3.

Lemma 3.12. Let |E(M)| > 11, and suppose that M has no two disjoint
4-cocircuits. Let Dy, Do, D3, and Dy be distinct 4-cocircuits of M such that
|D1 N D2| =2 and Dg is {Dl,DQ}—Type—Z. If Dy & D1 U Do U Dg, then Dy
is {D1, Da}-Type-1.

Proof. Without loss of generality, let D; = {x1,z9,23,24}, Do =
{z1,29, 25,26}, and D3 = {x3,x5, 27,28}, and suppose xg € Dy. If Dy
is not { D1, D9 }-Type-1, then, by Lemma 3.11, it is either {D;, Dy }-Type-2
or {D1, D2}-Type-3. First assume that Dy is { D1, Da}-Type-3. Then, with-
out loss of generality, either Dy = {x3, x4, 25,29} or Dy = {x3, 24,6, 29}
If Dy = {x3,24, 25,29}, then |D3 N Dy| = 2 and |Dy N (D3 U Dy)| < 2, con-
tradicting Lemma 3.8. Similarly, if Dy = {x3, x4, 6, x9}, then |D1NDy| = 2
and |D3 N (D; U Dy)| < 2, again contradicting Lemma 3.8. Thus Dy is not
{D1, Dy}-Type-3.

Now assume that Dy is {Dj, D2}-Type-2. Then |D4 N {x3, 25} < 1;
otherwise, {x3, 25} C D4 and |D1N(D3UDy)| < 2, contradicting Lemma 3.8.
If |Dy N {x3, 25} = 1, then, without loss of generality, x3 € Dy. Since Dy
is {Dy, Dy}-Type-2, we have ¢ € Dy. Furthermore, either x7 or xg is
in Dy; otherwise, |D1 N D3 N Dy = 1 and |D; N D;| = 1 for all distinct
i,j € {1,3,4}, and so we contradict Lemma 3.6 as |[E(M)| > 11. Hence, by
Lemma 3.1, we may assume Dy = {3, zg,x7,29}. But then |[Ds N Dy| =2
and |D1 N (D3 U Dy)| < 2, contradicting Lemma 3.8.

It now follows that Dy avoids {z3,z5}, and so x4,26 € Dy. Further-
more, as M has no disjoint 4-cocircuits, we may assume x7y € Dy. Thus
Dy = {z4,x6,27,29}. By (P2), M has a 4-cocircuit D5 containing xi.
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By Lemma 3.11, Dj is {Dj, D2}-Type-i for some i € {1,2,3}. By apply-
ing the argument that showed Dy is not {D1, Dy}-Type-3 to D5, we have
that Ds is not {Dj, D9}-Type-3. If D5 is {D1, Da}-Type-2, then, by the
analysis of the previous paragraph, {z4,x¢} C D5 and {z7,25} N D5 # (.
If D5 = {x4,26,27,210}, then |Dgs N Ds| = 3, and so, by Lemma 3.1,
M is isomorphic to Usg; a contradiction. If Ds = {x4,z6, 28,210}, then
|Ds N Ds| =2 and |D; N (D4 U Ds)| < 2, contradicting Lemma 3.8. There-
fore Dy is {D1, Do }-Type-1. It is easily checked that, by symmetry, we may
assume that Ds is (D1, Dg)-Type-1.

By symmetry, we may assume {z1,23} C Ds. Furthermore, D5 contains
either x7 or xg; otherwise, D4y N D5 = (). But, if D5 = {x1, x3, 27,210}, then
|DsNDs| =2 and |DyN(D3sUDs)| < 2, contradicting Lemma 3.8. Similarly,
if Dy = {x1,x3, %9, 210}, then |[D1 N Ds| =2 and D3N (D1 UDs)| < 2, again
contradicting Lemma 3.8. This completes the proof of the lemma. [l

Lemma 3.13. Let |E(M)| > 11, and suppose M has no two disjoint 4-
cocircuits. Let Dy, Do and D3 be distinct 4-cocircuits of M such that | Dy N
Dy| =2 and D3 € D1 U Dy. Then Ds is not {D1, Da}-Type-2.

Proof. Suppose D3 is {D1, D }-Type-2. Then, without loss of generality, let
Dy = {x1, 22,73, 74}, D2 = {1, %2, 75,76}, and D3 = {x3,25,77,78}. By
(P2), M has a 4-cocircuit Dy containing xg. By symmetry and Lemma 3.12,
we may assume that Dy is (D1, D2)-Type-1, in which case, Dy meets {x3, x4}
but avoids {zs5,x6}. Since |D; N Dy4| = 2, it follows by Lemma 3.8 that
|D3N(D1UDy)| > 2, s0 Dyn{x7, x5} # (0. Hence, without loss of generality,
either Dy = {z1,23,27,29} or Dy = {x1,24,27,29}. First assume that
Dy ={x1,z3,27,29}.

3.13.1. Let D be a 4-cocircuit of M such that D € DyUDsUD3sUDy. Then
|{x1,x3} ND|=1.

By Lemma 3.12, D is {D;, D2}-Type-1. Furthermore, as |D3 N Dy4| = 2
and Ds is (D3, D4)-Type-2, it follows by Lemma 3.12 that D is {Ds, D4}-
Type-1. Also, as D1 N Dy = {x1, 23}, Lemma 3.9 implies that {z1, 23} € D.

If {z1,23} N D = 0, then, as D is {Dy, D2}-Type-1 and {Ds, D4}-Type-1,
we have {x9,27} C D as well as 5 € D. Hence DN (D; U Dy U D3 U
Dy) = {x2,z5,27}. Now |D2 N D| = 2 and |D3 N D| = 2. Furthermore,
Dy is {D9, D}-Type-2, D is {D3, D}-Type-2, and D is {D;, D4}-Type-2.
Therefore, by Lemma 3.12, if D’ is a 4-cocircuit of M such that D' ¢
(D1 U Dy U D3 U Dy U D), then D’ is {Dy, D}-Type-1, {D3, D}-Type-1,
and {Di, D4}-Type-1. As |[E(M)| > 11, M has such a cocircuit D'. By
Lemma 3.9, if 1 € D', then 29 ¢ D" and x5 ¢ D’. Since D' is a {Dy, D}-
Type-1 and {Ds, D}-Type-1, we have x5 € D" and, further, x7 ¢ D’. Since
D" is {Ds, D}-Type-1 and {D1, D4}-Type-1, we also have |[D'N((D3sUD) —
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(DgﬂD))| =1and |D,ﬂ((D1 UD4)—(D1 ﬂD4))| = 1. But ((D3UD)—(D3ﬂ
D))ﬂ((Dl UD4)—(D1 ﬂD4)) = {l’g,l‘g, 1‘7}, so D' C (Dl UDQUDgUD4UD);
a contradiction. Thus x; € D’. A similar argument shows z3 ¢ D’. But
then D’ is not {D;, D4}-Type-1; a contradiction. Hence 3.13.1 holds.

Let D5 be a 4-cocircuit of M that contains x19. Now let ¢ be the permu-
tation of {x1,x9,..., 29} defined by

(x1,x3) (x2,27) (x4, 29) (25) (6, X8).

Noting that ¢(D1) = D4, ¢(D2) = D3, ¢(D3) = Da, and ¢(D4) = D, it
follows by 3.13.1 that we may assume x1 € Ds and z3 € Ds. Since Ds is
(D3, Dyg)-Type-2, it follows by Lemma 3.12 that D5 is { D3, D4 }-Type-1, and
so x7 € D5 but x5 ¢ Ds. Therefore, as Ds is { D1, D2 }-Type-1, it follows by
Lemma 3.8 that D5 contains one of x4 and xg.

If x4 € D5, then ‘Dl N Dy ﬂD5| =1 and
|D1 N Dy| = |Dy N Ds| =|DyN Ds| =2,

contradicting Lemma 3.10. Thus z¢ € D5 and so D5 = {x1, x¢, 7,210} By
(P2), M has a 4-cocircuit Dg containing 1. By 3.13.1, either x; € Dg or
x3 € Dg. If 1 € Dg, then, by the previous argument concerning Ds and
now applied to Dg, we get Dg = {x1,x¢,27,211}. But then |Ds N Dg| = 3
and so, by Lemma 3.1, M = Uz 6; a contradiction. Therefore x1 ¢ Dg and so
x3 € Dg. Observe that |Ds N Ds| = 2 and Ds is { D3, D5 }-Type-2 and so, by
Lemma 3.12, Dg is {D2, D5}-Type-1. But Dg is also {D;, Da}-Type-1 and
{D3, D4}-Type 1 by Lemma 3.12. Therefore Dg contains an element from
each of the sets {1,6}, {1,2}, and {1,5,8,9}. This is impossible as Dg has
exactly four elements and x; ¢ Dg. We conclude that Dy # {x1,z3, z7, 29}

We may now assume that Dy = {x1, 24, 27,29}. Now |D; N Dy| = 2 and
D3 is {Dy, D4}-Type-2. Therefore, by Lemma 3.12,

3.13.2. if D is a 4-cocircuit of M such that D € D1 U D3 U Dy, then D is
{D1, Du}-Type-1.

We next show that

3.13.3. M has a 4-cocircuit containing w1 and an element mnot in
{xl,IEQ,...,CEQ}.

Let Ds be a cocircuit containing x19. If 1 € Ds, then, as Dy is { D1, Da}-
Type-1 and, by 3.13.2, {D1, D4}-Type-1, it follows that {z2, 24} C D5 and
{3, x5, 26, 27,29} N D5 = (. Further, as M has no disjoint 4-cocircuits,
D5 N D3 # (). Therefore, D5 = {x2, x4, 78, 710}. As |E(M)| > 11, M has a
4-cocircuit Dg containing z11. By the same reasoning, {x2, x4, 28} C Dg, so
|Ds N Dg| = 3; a contradiction. Thus 3.13.3 holds.
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By 3.13.3, we may assume that M has a 4-cocircuit D5 containing x; and
r19. We show that

3.13.4. xr3 Q D5.

If 3 € Ds, then, as Ds is {D1, D2}-Type-1 and {D;, D4}-Type-1, we
have {z9, x4, x5, z6, 27,29} N D5 = (. Furthermore, |D; N D5| = 2 and so,
by Lemma 3.8, the existence of the cocircuit Ds implies that zg € Ds.
Therefore D5 = {x1,x3,28,210}. By (P2), M has a 4-cocircuit Dg con-
taining z11. Since |D3 N Ds| = 2 and Dy is {Ds, D5 }-Type-2, it follows by
Lemma 3.12 that Dg is {Ds, Ds}-Type-1. As Dg is also {D;, Da}-Type-1
and, by 3.13.2, {D1, D4}-Type-1, it is easily checked that z1 € Dg, in which
case {wa, x4, 25, 27,210} N Dg = (. This implies that each of Dg N {3,8},
Dg N {3,6}, and Dg N {3,9} is non-empty, and so z3 € Dg. But then
Dy N Ds N Dg = {1, 3}, contradicting Lemma 3.9. Thus z3 ¢ D5, thereby
establishing 3.13.4.

Since Ds is {D1, D2}-Type-1 and {D1, D4}-Type-1, but does not contain
xg, it follows that |{zs5,z6¢} N Ds| = 1 and [{x7,29} N Ds| = 1. In turn
this implies D5 contains either x5 or x7; otherwise, it is disjoint from Djs.
If z¢ € D5, then z7 € Dj, in which case, |Ds N D3| = 2. But then |[D3 N
(D4 U D5)| = 1, contradicting Lemma 3.8. Therefore x¢ ¢ D5, so x5 € Ds.
Then |Dy N Ds| = 2, and so, by Lemma 3.8, [D3 N (D U Ds)| > 2, which
implies z7 € Ds. By (P2), M has a 4-cocircuit Dg containing x1;. If
x1 € Dg, then, by an argument analogous to that which determined Dy, we
have D¢ = {z1,25, 27,211} and so |Ds N Dg| = 3; a contradiction. Thus
x1 € Dg. Since Dg is {D1, Dy}-Type-1 and {D1, D4}-Type 1, it is easily
checked that Dg = {x9,x3, x4, x11}. But then |D; N Dg| = 3; a contradiction
to Lemma 3.1. This completes the proof of Lemma 3.13. O

Lemma 3.14. Let |E(M)| > 11, and suppose M has no two disjoint 4-
cocircuits. Let Dy, Do, and D3 be distinct 4-cocircuits of M such that |[DiN
Dy =2 and D3 € Dy U Dy. Then Ds is not {D1, Da}-Type-3.

Proof. Suppose that D3 is {D1, D2}-Type-3. Then, without loss of gen-
erality, let D1 = {x1,x9,23,24}, Dy = {x1,29,25,26}, and D3 =
{3, x4, x5, 27}. Note that Do is (D1, D3)-Type-3.

3.14.1. Let D be a 4-cocircuit of M such that D € D1 U Do U Ds. Then D
is neither { Dy, Da}-Type-3 nor { D1, Ds}-Type-3.

Without loss of generality, we may assume xg € D. First suppose that D
is {Dl, Dg}—Type—?). If Dis (Dl, Dg)—Type—?), then DiND3sND = {l‘g, 134},
contradicting Lemma 3.9. Therefore assume that D is (D3, D1)-Type-3. By
symmetry, we may assume D = {x3, x5, T¢, Ts}.
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By (P2), M has a 4-cocircuit D’ containing xg. Since D’ is not {D1, Da}-
Type-2 by Lemma 3.13, it follows by Lemmas 3.9 and 3.13 that D’ is neither
{D1, D3}-Type-3 nor {Dy, D3}-Type-2. Therefore, by Lemma 3.11, D’ is
{D1, D2}-Type-1. By considering the way in which D;, Do, D3, and D
relate to each other, we may assume, by symmetry, that 1 € D’ and that
|D" N {z3,24}] = 1 and |D’' N {x5,26}| = 0. If z4 € D', then g € D’;
otherwise, D N D’ = (. But then, D’ is {D3, D}-Type-2, contradicting
Lemma 3.13 as | D3N D| = 2.

Therefore x3 € D'. Now xg € D’; otherwise D’ is { Dy, D}-Type-2, con-
tradicting Lemma 3.13 as |Da N D| = 2. Hence D’ = {x1,x3,28,79}. By
(P2), M has a 4-cocircuit D" containing x19. As above, D" is {Dy, Ds}-
Type-1, and |{z1,22} N D”| =1 by Lemma 3.9. By Lemma 3.13, D" is not
{D3, D}-Type-2. Furthermore, as either {x1,z19} C D" or {z9, 219} C D",
it follows that D” is not {Ds, D}-Type-3. Thus, by Lemma 3.11, D" is
{D3, D}-Type-1, and so |{z3,25} N D"| = 1. Say x; € D”. Then, by
Lemma 3.9, x3 € D", so x5 € D”. But then D" is {Dy, D3}-Type-3 and
{D, D'}-Type-3, by Lemma 3.11 and Lemma 3.13, and so |{x2, z7}ND"| =1
and [{ze,z9} N D"| = 1; a contradiction. Thus x; ¢ D” and so zo € D".
If z3 € D"  then D" is {Ds, D}-Type-3, and so D" = {x9,x3, 25,210}
But then D N D' N D" = {x3,28}, contradicting Lemma 3.9. There-
fore 3 ¢ D" and x5 € D”. So D" is {D;y,D’}-Type-3, in which case
{z4, 28,29} N D"| = 2; a contradiction. Hence D is not {D;, Da}-Type-3.
Since Dy is (D1, D3)-Type-3, it follows by symmetry that D is not { Dy, D3}-
Type-3. Thus 3.14.1 holds.

By Lemma 3.13 and 3.14.1, every 4-cocircuit D of M such that D
Dy U Dy U D3 is both {Dy, Do}-Type-1 and {D1, D3}-Type-1. In fact, we
show that

3.14.2. D is both (D1, D2)-Type-1 and (D1, D3)-Type-1.

Without loss of generality, we may assume that zg € D. Note that
D is (D1, D9)-Type-1 if and only if it is (D1, D3)-Type-1. Suppose D is
neither (Dj, D3)-Type-1 nor (D1, D3)-Type-1. Then D is (D, D1)-Type-1
and (Ds, D1)-Type-1. But the former implies that D N {x3, 24} = (), while
the latter implies D N {x3, 24} # 0; a contradiction. Thus 3.14.2 holds.

By (P2), M has a 4-cocircuit Dy that contains zg. By 3.14.2, we may as-
sume Dy = {x1,x3,xs,T9}. Furthermore, M has a 4-cocircuit D5 containing
x10. By 3.14.2, Dy is (D1, D3)-Type-1 and (D, D3)-Type-1. This implies
{x1,22} N Ds| =1 and [{x3,24} N D3| = 1. By Lemma 3.9, {z1,23} Z Ds
and so D1 N D5 is one of {x1, x4}, {22, x5}, and {x2, z4}.

Say {x1,24} C Ds. Then {xg5,x9} N D5 # 0; otherwise, |[DoNDyNDs| =1
and |Dy N Dy| = |Da N Ds| = |Dy N Ds| = 1, and so, by Lemma 3.6,
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|E(M)| = 10. Therefore, we may assume D5 = {z1, x4, s, 10}. But then
|D1 OD4QD5| =1 and |D1ﬂD4| = |D1 ﬂD5| = |D4QD5| = 2, contradicting
Lemma 3.10. Similarly {z9, 23} € D5, and therefore {2, 24} C D5. Now,
Ds N {xg,z9} # 0; otherwise, Dy and Ds are disjoint. Hence, without
loss of generality, D5 = {x9,xz4,xs,210}. By (P2), M has a 4-cocircuit
Dg containing x11. As the restrictions on Dy also apply to Dg, we have
{z9, x4} C Dg, which contradicts Lemma 3.9 as D1 N D5 = {x2,24}. This
completes the proof of Lemma 3.14. U

At last we show that M has two disjoint 4-cocircuits if |[E(M)| > 11.
Lemma 3.15. Let |[E(M)| > 11. Then M has two disjoint 4-cocircuits.

Proof. Suppose that M has no two disjoint 4-cocircuits. By Lemma 3.7, M
has 4-cocircuits D and Dy with |D;NDsy| = 2. Without loss of generality, let
Dy = {x1, 29, 23,24} and Dy = {x1, 22, x5, x6}. By (P2), M has a 4-cocircuit
D3 containing x7. Lemmas 3.13 and 3.14 together with Lemma 3.11 imply
that D3 is {D1, Do}-Type-1. Therefore, without loss of generality, D3 =
{z1,x3,27,28}. Let D be a 4-cocircuit of M such that D € Dy U Dy U Ds.
Since |D; N D3| = 2, it again follows by Lemmas 3.11, 3.13, and 3.14 that
D is {D1, Do}-Type-1 as well as {D;, D3}-Type-1. We next show

3.15.1. D is not both (D2, D1)-Type-1 and (D3, Dy )-Type-1.

If D is both (D2, D1)-Type-1 and (D3, D1)-Type-1, then, without loss of
generality, {5,27} C D. In turn, this implies ;1 € D, so we may assume
D = {x1,25,27,29}. By (P2), M has a 4-cocircuit D’ containing x19. As
|D2ND| =2 and |D3ND| = 2, it follows by Lemmas 3.11, 3.13, and 3.14 that
D" is {D;, Dy}-Type-1, {D1, D3}-Type-1, {Dy, D}-Type-1, and {D3, D}-
Type-1. This implies that 1 € D’, and it is easily checked that either
{z4,29} C D' or {wg,x8} C D'. If {xg, 29} C D', then D' = {x1, x4, 9,210}
But then |[DoN D3N D'| =1 and |DaN D3| = |[DeND'| =|DsND’| =1, and
so, by Lemma 3.6, |[E(M)| = 10; a contradiction. Similarly, if {z¢,zs} C D',
then [DyNDND'|=1and |[DyND|=|DiND'|=|DND'|=1and we
contradict Lemma 3.6. This proves 3.15.1.

In addition to 3.15.1, we also have

3.15.2. {:EQ,CL‘g} g D.

By 3.15.1, D is at least one of (D, D2)-Type-1 and (Dy, D3)-Type-1. If
D is (Dy, D2)-Type-1, then, since D is {D1, D3}-Type-1, we have [{z1,x3} N
D| =1. If x; € D, then x4 € D and DN (D U Dy U D3) = {x1,x4}, and
SO |D2 N D3 ﬂD| =1 and ’DQ ﬂD3| = |D2 ﬂD| = |D3 ﬂD| = 1. But then,
by Lemma 3.6, |E(M)| = 10; a contradiction. Therefore 1 ¢ D, and so
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{xe,z3} C D. Similarly, if D is (D1, D3)-Type-1, we have {x9,23} C D.
Thus 3.15.2 holds.

By (P2), M has a 4-cocircuit D4 containing xg. By 3.15.2, {x9, z3} C Dy.
Therefore, as |E(M)| > 11, we deduce that M has a 4-cocircuit D5 such
that Ds € Dy U Dy U D3 U Dy. But then, by 3.15.2, we have {x9,z3} C Ds.
Therefore D1 N Dy N D5 = {x2,z3}, contradicting Lemma 3.9. This last
contradiction completes the proof of Lemma 3.15. ([l

Having established that M has two disjoint 4-cocircuits if |[E(M)| > 11,
the last step before proving the necessary direction of Theorem 1.4 for
|[E(M)| > 16 is to show that E(M) can be partitioned into 4-cocircuits
if |[E(M)| > 16. Before showing this, we prove two preliminary results.

Lemma 3.16. Let X C E(M) such that M|X = M(Ksy4), and let D be a
4-cocircuit of M meeting X. Then either D contains exactly one element
from each of the four series pairs of M| X, or DN X is a series pair of M |X.

Proof. Suppose the lemma does not hold. For all i € {1,2,3,4}, let
{zi,yi} denote the series pairs of M|X. Since M is 4-connected, D N X #
{zi,yi,xj,y;} for distinct i, j € {1,2,3,4}. Therefore, for some ¢ and j, we
have |[DN{zj,y;}| =1 and [DN{x;,y;}| = 0. But {x;,;,yi,y;} is a circuit;
a contradiction. Thus the lemma holds. (|

Lemma 3.17. If |[E(M)| > 13, then M has three pairwise-disjoint 4-
cocircuits.

Proof. Suppose that |[E(M)| > 13 and M has no three pairwise-disjoint 4-
cocircuits. By Lemma 3.15, M has two disjoint 4-cocircuits, D; and Do
say. Moreover, by Lemma 3.5, M|(D; U Dg) = M(Ky4). Without loss
of generality, let D; = {1,290, 23,24} and Dy = {x5,x¢,x7,28}, and let
{x1,25}, {x2,x6}, {x3, 27}, and {x4, zs} be the series pairs in M|(D; U Dy).
By (P2), M has a 4-cocircuit D3 containing xg. Since D3 N (D1 U Dg) is
nonempty, it follows by Lemma 3.16 that D3 N (D; U D3) is a series pair of
M/|(D1 U Dy). Thus, without loss of generality, D3 = {x1, x5, 29, x10}. Let
D be a 4-cocircuit of M such that D € D1 U Do U D3. We next show that

3.17.1. D3N D # 0.

If D3N D = (), then, as D N (D U D3) is nonempty, we may assume by
Lemma 3.16 that D = {x9,x¢,z11,712}. By Lemma 3.5, M|(Ds U D) =
M (K3 4) and so, by orthogonality, {1, z2} and {x5, 26} are series pairs in
M|(D3UD). Thus, without loss of generality, we may assume {zg, z11} and
{710, 12} are also series pairs in M|(Ds U D).
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Now M has a 4-cocircuit D’ containing x13. Furthermore, D’ N (D1 U Ds)
and D' N (D3 U D) are both nonempty. By Lemma 3.16,

D'N(D1U Dy) € {{z1, 25}, {wa, w6}, {23, 27}, {T4, 28} }

and

D'N (Dg @] D) S {{1‘1, .%‘2}, {565, Iﬁ}, {.’Eg, :En}, {1}10, 1612}}.

As |D’'| = 4, the intersections D' N (Dy U Dg) and D' N (D3 U D) are not
disjoint. But then D’ meets a circuit of M|(D;UDs3) in exactly one element;
a contradiction. Thus 3.17.1 holds.

We also have

3.17.2. {%1,.%'5} NnD=0.

If 21 € D, then either x5 € D, or D meets each of {xe,x¢}, {x3,27},
and {x4,xg}. In the latter case, D C Dj U Dy U Ds; a contradiction. Then
x9,x10 € D by Lemma 3.1, so we may assume that D = {z1, x5, 211,212}
Now (D3 U D) — 1 contains a cocircuit and, by orthogonality, this cocircuit
avoids x5. Hence, as M is 4-connected, {xg, 10, 11, 12} is a 4-cocircuit of
M disjoint from D7 and Ds; a contradiction. Thus z1 € D and, similarly,
x5 ¢ D, and 3.17.2 holds.

By (P2), M has a 4-cocircuit D4 containing z1;. By 3.17.1 and 3.17.2,
we may assume xg € Dy. Furthermore, as Djy meets D; U Do, we may
assume that by Lemma 3.16 that Dy = {x9,x¢,29,211}. Now M has a
4-cocircuit Dj containing x12. By 3.17.1 and 3.17.2, D3 N D5 # ) and
{z1,25} N D5 = . Moreover, replacing D3 with D, in the above argument
shows that D4sN D5 # () and {x2, 26 }ND5 = (). Therefore we may assume that
D5 = {x3,27,x9,212}. Now M has a 4-circuit C' containing {z4,z9}. By
orthogonality, C meets each of {x1, x5, 210}, {x2,x¢, 11}, and {x3, 27, x12}.
But then |C| > 5; a contradiction. This completes the proof of Lemma 3.17.

O

The next lemma extends Lemmas 3.15 and 3.17.

Lemma 3.18. If |[E(M)| > 16, then E(M) can be partitioned into 4-element
blocks, where each block is a 4-cocircuit.

Proof. Suppose that |[E(M)| > 16. We first show that M has four pairwise-
disjoint 4-cocircuits. By Lemma 3.17, M has three pairwise-disjoint 4-
cocircuits, D1, Dy, and D3 say. Moreover, by Lemma 3.5, we have
M|(DZ U D]) = M(KQA) for all distinct 7,5 € {1,2,3}. Let z1, 29, z3,
and z4 be distinct elements of E(M) — (D1 U Dy U D3). By (P2), each
of these elements is in a 4-cocircuit, Zy, Zo, Z3, and Z4 say, of M. If
Zi N (D1 U Dy U D3) = () for some i, then M has four pairwise-disjoint
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4-cocircuits. Therefore assume Z; N (D1 U Dy U D3) is nonempty for all
i.  Then, by Lemma 3.16, we have |Z; N (D1 U Dy U D3)| = 3 and
|Z; N Di| = |Z;N Ds| = |Z; N D3| =1 for all 7. If, for distinct ¢ and j,
we have Z; N Z; # 0, then it is easily checked that |Z; N Z;| = 3, con-
tradicting Lemma 3.1. It now follows that Z;, Zs, Z3, and Z4 are four
pairwise-disjoint 4-cocircuits of M.

Now suppose that E(M) cannot be partitioned into 4-cocircuits. Let
{D1,Ds,...,D,} be a maximum-sized set of pairwise-disjoint 4-cocircuits
of M. Then, by above, n > 4. Let = be an element of E(M) — (D; U
DyU---UD,,). By (P2), M has a 4-cocircuit D containing x. Furthermore,
DN (DyUDyU---UDy) # 0. Without loss of generality, we may assume
that DN Dy # 0, and so DN (D1 U Dy U D3 U Dy) # (). But, for all distinct
i,j € {1,2,3,4}, we have M|(D; U D;) = M(K24) and so, by Lemma 3.16,
|DN (D1 UDyUDsU Dy| > 4; a contradiction. The lemma now follows. [

We are now ready to prove the necessary direction of Theorem 1.4 when
|E(M)| > 16.

Proof of Theorem 1.4 for |E(M)| > 16. Suppose |E(M)| > 16. Then, by
Lemma 3.18, there is a partition of E(M) into 4-cocircuits Dy, Da, ..., Dy,
where D; = {w;, x;,y;, 2} for all i By Lemma 3.5, M|(D; U
D;) = M(Ky4) for all i € {2,3,...,n}, so we may assume M has
4-circuits {wy, z1,w;, x;}, {wi,yi,wi, vy, {wi,z1,wi, 2z}, {T1,91, %0, v},
{z1, 21, i, 2}, and {y1,21,v:,2} for all such i. Consider the 4-circuits
{w1, z1,w;, 2;} and {wi,z1,wj,x;} for some distinct i,j € {2,3,...,n}.
By circuit elimination and orthogonality, {w;,z;,w;,z;} is a 4-circuit of
M. Similarly, for all distinct i,j € {2,3,...,n}, we have {w;,y;,w;,y;},
{wi, zi, wj, 2}, {xi, vi, 25,95} {24, 26, 25, y5}, and {vs, 2, y5, 2 } are 4-circuits
of M. In turn, as M|(D; U D;) = M (K> 4) for all distinct ¢ and j, we have
3.18.1. {ws,w;}, {xi,z;}, {vi,y;}, and {z,2;} are the series pairs in
M|(D; U Dj) for all distinct i and j.

Now consider K4 5, where n > 4. Label the edge set of K4, so that

{{wla x1, Y1, Z1}7 {w2> x2,Y2, Z2}) SRR {wn7 Lny Yn, Zn}}

is a partition of E(K4,), where each block is a bond of Ky4,, and
{wia Ly, Wy, xj}) {wia Yi, Wy, y]}a {wia 2, Wy, Zj}7 {xiv Yi> Tj, y]}a {xh Ziy Lj, Zj}a
and {y;, 2, y;, z;} are 4-cycles of Ky, for distinct 7,5 € {1,2,...,n}. We
next show that the identity map ¢ from E(M(K4y)) to E(M) is a weak map
from M(Ky,) to M. Let C be a circuit of M (Ky4,). Then |C| € {4,6,8}.
If C' is a 4-circuit, then, by above, ¢(C) is a 4-circuit of M. Now assume
that |C| = 6. Then, without loss of generality, we may assume

C= {wi)ajivxja yjaykvwk}7
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where i, j, and k are distinct elements in {1,2,...,n}. Using circuit elimina-
tion on the 4-circuits {w;, z;, w;, x;} and {wj, y;, wi, yi } of M, it follows that
{wi, zs, x5, y;, Yk, wr } contains a circuit of M. By orthogonality and 3.18.1,
it is easily checked that

{wia LTiyTjy Y55 Yk, wk}
is a 6-circuit of M. Thus if C' is a 6-circuit of M (Kyy), then ¢(C) is a 6-
circuit of M. Lastly, assume that |C| = 8. Then, without loss of generality,
we may assume
C = {wi, wj, 5, Tk, Y, Y1, 215 %i §
where 4, j, k, and [ are distinct elements in {1,2,...,n}. Now
{wi, wj, xj, o, yi, vi } and {ys, y, 21, 2} are circuits of M. By circuit elimi-
nation, {w;, wj,xj, Tk, Yk, Y1, 21, 2} contains a circuit of M. If this last set
is not a circuit, then, by orthogonality and 3.18.1, it contains a 6-circuit
of M. Without loss of generality, we may assume that this 6-circuit is
{wi, wj, xj, o, yi, z:}. But then, as {x;,y;,xp, yr} is a 4-circuit of M, it
follows by circuit elimination that
X = {wia Wy, X, Ty Zi y]}

contains a circuit of M. By orthogonality and 3.18.1, X contains no circuit
of M. Thus C is an 8-circuit of M. It now follows that if C' is a circuit of

M(Kyy), then o(C) is a circuit of M. Hence M is a weak-map image of
M (Ky,,) under .

We next show that

3.18.2. M|(D; U D; U D, U D;) = M(Kya) for all distinct i,5,k,1 €
{1,2,...,n}.

By above, M|(D; U D; U D, U Dy) is a weak-map image of M (Ky4).
Furthermore, as M|(D; U D; U Dy, U D;) has an 8-circuit, it follows that
T(M’(Dl U Dj U Dy U Dl)) > 7. Since .Z\4|(DZ U D]) = M(KQA), we have
r(M|(D; U Dj)) =5 and so, by the 4-circuits of M established above,

In turn, as D; is a cocircuit of M|(D; U D; U Dy, U D;), we deduce that
T(M’(Dl U Dj UDp U Dl)) < 7. Thus T‘(M‘(Dz U Dj UDp U Dl)) =7, that is,
T(M’(D, U Dj U Dy U Dl)) = T‘(M(K4,4)). Since M|(Dl U Dj UD,U Dl) is
connected, it follows by Theorem 1.5 that M|(D;UD;UD,UD;) = M (Ky4).
Thus 3.18.2 holds.

We next prove that 7(M) = r(M(K4y)). To do this, we show, by in-
duction, that for all 4-connected matroids M’ satisfying (P2) and whose
ground set can be partitioned into m 4-cocircuits, where m > 4, we have
r(M') = r(M(K4y,)). If n = 4, then, by 3.18.2, r(M) = r(M(Ku4)).
Therefore suppose that n > 5 and that, for all matroids M’ as described
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above, with 4 <m <n — 1, we have r(M') = r(M(Ky,m)). Let M~ denote
the matroid M|(D1 U Dy U ---U D,,_1). We first show that M~ satisfies
(P2). Evidently, every element of M~ is in a 4-cocircuit. Let x and y be
distinct elements of M ™. If x and y are in distinct 4-cocircuits D; and D;
of M~ then, by orthogonality and M satisfying (P2), M~ has a 4-circuit
containing {z,y}. Thus assume = and y are in the same 4-cocircuit D; of
M~. By considering D; with Dy if i 21 or Do if i = 1, it follows that M~
has a 4-circuit containing {x,y}. Lastly, if M~ is not 4-connected, then it
has a 2- or 3-separation (A, B). Since n > 5, it is easily checked that, for
distinct ¢, j, k, and [, there are four 4-cocircuits D;, D;, Dy, and D; of M~
such that |[AN (D; UD; UD,UD;)| >3 and |BN(D; UD; UD,UD;) > 3.
Now, by [3, Lemma 8.2.3],

2>r(A)+r(B)—r(M")
T’(Aﬂ (Dz U Dj U Dy, UDZ)) + r(B N (l)z U Dj U Dy, UDZ>)
- T'(DZ U Dj UDy U Dl)

>
>

But then M|(D;UD;U Dj,UDy) is not 4-connected, contradicting 3.18.2. It
follows that M~ is 4-connected, and so M~ satisfies (P2). By induction,

r(M™)=r(M[(D1UD2U---UDy1)) =r(M(Ksn-1))
and so, as D,, is a cocircuit of M,

T(M) = T(M‘(Dl UDyU---U Dn—l)) +1= T(M(K;Ln))

Finally, as M is connected, it now follows by Theorem 1.5 that M =
M (Ky,,), thereby completing the proof of Theorem 1.4. O
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APPENDIX

Let M be a 4-connected matroid satisfying (P2) with |E(M)| < 15. Then
M is one of thirty-five matroids. These thirty-five matroids comprise of Us g,
twenty-one 8-element paving matroids, ten 9-element paving matroids, Rig,
a 12-element matroid, and a 14-element matroid. The matroid Rig is the
unique splitter for the class of regular matroids and for which

&

_ o O = =
OO~ = =
|
O R Rk~ O
—_ == O O
_ 0 O =

is a representation of it over all fields. Precise descriptions of the 8-, 9-, 12-,
and 14-element matroids are given below. For ease of reference, the notation
is in keeping with the notation in [4],

8-Element Matroids. If |[E(M)| = 8, then M is one of twenty-one rank-4
paving matroids. Let F(M) = {1,2,...,8}. Up to isomorphism, to describe
M, it is sufficient, to list the 4-circuits of M. The first table consists of
those matroids M having the property that, for every 4-circuit C', there is
another 4-circuit of M meeting C' in exactly one element.
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M 4-Circuits of M

Mg, {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{2,4,5,6}, {1,4,7,8}, {1,3,6,8}

Mgo {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{2,4,5,6}, {1,3,6,8}, {4,6,7,8}

Mgs {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{1,4,6,8}, {2,4,7,8}

Mgs+ {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{1,4,6,8}, {2,4,7,8}, {1,3,7,8}

Mg, {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{4,6,7,8}

Mgy {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {3,4,5,8}, {2,3,6,7},
{4,6,7,8}, {1,3,6,8}

Mgs {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {2,3,6,8}, {3,4,5,6},
{1,4,7,8}, {3,5,7,8}, {2,4,6,8}

Mge {1,2,3,4}, {1,5,6,7}, {1,2,5,8}, {2,3,6,7}, {3,4,5,6},
{2,4,7,8}, {1,3,6,8}

The second table consists of those matroids M having a 4-circuit C such
that every other 4-circuit of M meets C in exactly two elements. Note that,
in the table, F7+ denotes the free coextension of F7.
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M 4-Circuits of M

Fif {1,2,3,4}, {1,2,5,6}, {1,2,7,8} {1,3,5,7}, {1,3,6,8},
{1,4,5,8}, {1,4,6,7}

Mg 7 {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,3,6,8},
{1,4,5,8}, {2,4,6,7}

Mg 7+ {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,3,6,8},
{1,4,5,8}, {2,4,6,7}, {3,4,6,7}

Mg gq {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,3,6,8},
{2,4,5,8}, {3,4,6,7}

Ms g {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,3,6,8},
{2,4,5,8}, {2,4,6,7}

Mg gq {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,5,8},
{2,3,6,8}, {2,4,6,7}

Mz g1 {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,5,8},
{2,3,6,8}, {3,4,6,7}

Mg o+ {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,5,8},
{2,3,6,8}, {3,4,6,7}, {2,4,5,7}

Msg 19 {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,6,8},
{3,4,5,8}, {3,4,6,7}

Mg+ {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,6,8},
{3,4,5,8}, {3,4,6,7}, {2,3,6,8}

Mgqo++ {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,6,8},
{3,4,5,8}, {3,4,6,7}, {2,3,6,8}, {2,4,5,7}

Mg 11 {1,2,3,4}, {1,2,5,6}, {1,2,7,8}, {1,3,5,7}, {1,4,6,8},
{3,4,5,8}, {2,3,6,7}, {2,4,5,7}

Mg 19 {1,2,3,4}, {1,2,5,6}, {1,3,5,7}, {1,4,5,8}, {2,3,7,8},
{2,4,6,7}, {3,4,6,8}

9-Element Matroids. If |[E(M)| =9, then M is one of ten rank-4 paving
matroids. Let E(M) = {1,2,...,9}. Again, to describe M, it suffices, up
to isomorphism, to list the 4-circuits of M. Here, if M is such a matroid,
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then its set of 4-circuits contains every 4-element subset of each the sets
{1,2,3,4,5}, {4,5,7,8,9}, and {2,3,6,8,9}. The remaining 4-circuits of M
are given in the next table.

M Remaining 4-Circuits of M

Moy, {1,2,6,7}, {1,3,7,8}, {1,4,6,9}, {1,5,6,8}

My, {1,2,6,7}, {1,3,7,8}, {1,4,6,9}, {1,5,6,8}, {3,4,6,7}

My, {1,2,6,7}, {1,3,7,8}, {1,4,6,9}, {1,5,6,8}, {3,5,6,7}

Moo {1,2,6,7}, {1,3,7,8}, {1,4,6,9} {3,5,6,7}

Mys {1,4,6,8}, {1,2,7,8}, {1,5,6,9}, {1,3,7,9}, {2,4,6,7}

Mys+ {1,4,6,8}, {1,2,7,8}, {1,5,6,9}, {1,3,7,9}, {2,4,6,7},
{3,5,6,7}

My, {1,4,6,8}, {1,2,7,8}, {1,5,6,9}, {1,3,7,9}, {2,5,6,7}

My .+ {1,4,6,8}, {1,2,7,8}, {1,5,6,9}, {1,3,7,9}, {2,5,6,7},
{3,4,6,7}

Mys {1,4,6,8}, {1,2,7,8}, {1,5,6,9}, {3,4,6,7}

Mys {1,4,6,8}, {1,2,7,9}, {3,5,6,7}

12- and 14-Element Matroids. The unique 4-connected 12-element ma-
troid satisfying (P2) and the unique 4-connected 14-element matroid satis-
fying (P2) have GF'(4)-representations

and
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respectively, where a? + o+ 1 = 0.
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